Interferograms of laser-induced epoxy fiber reinforced polymer plasmas are obtained through aMach-Zehnder interferometry system.An improved digital double-exposure Fourier method is applied to extractinitial wrapped p...Interferograms of laser-induced epoxy fiber reinforced polymer plasmas are obtained through aMach-Zehnder interferometry system.An improved digital double-exposure Fourier method is applied to extractinitial wrapped phases from interferograms,and then an improved phase unwrapping algorithm based on a maskand a branch-cut method is proposed to solve the problem of phase unwrapping.After the inverse Abel transfor-mation of the unwrapped phase,spatial distributions of the electron density of laser-induced epoxy fiber rein-forced polymer plasma at various delays are acquired.Results show that the measured electron density of theplasma is mainly distributed on the order of 10^18 cm^3.The experiment also indicates that the total amount oflaser plasma electrons changes slightly within the recorded time and the change of the electron density is approx-imately inversely proportional to the change of the plasma volume.展开更多
With time and space resolved technique, we have recorded time resolved spectra of irradiation of the plasma induced by Nd: YAG laser ablating metal Aluminum in Ar, in which, laser pulse energy was set up to 145 mJ/pul...With time and space resolved technique, we have recorded time resolved spectra of irradiation of the plasma induced by Nd: YAG laser ablating metal Aluminum in Ar, in which, laser pulse energy was set up to 145 mJ/pulse and the buffer pressure 100 kpa. The continuum radiation and special emission of Aluminum plasma were studied based on the records. According to time distribution of Al Ⅰ396.15 nm emission, we analyzed the time differences between characteristic and continuum radiation evolving. We tried to explain the time phases of characteristic radiation evolving with traditional theoretical model of atomic transition. As the result, we found that it was difficult to explain our experimental results with the model. In order to explain our experimental results, we need new model or to improve the traditional theoretical model of atomic transition.展开更多
According to time distribution of Al Ⅰ396.15 nm emission in the plasma induced by laser ablating Aluminum, based on quantum mechanics, we have suggested a hypothesis of transient steady state of atom, which could giv...According to time distribution of Al Ⅰ396.15 nm emission in the plasma induced by laser ablating Aluminum, based on quantum mechanics, we have suggested a hypothesis of transient steady state of atom, which could give our experimental results overall and reasonable explanation in quantum. We suggested that there should be a certain atomic state between ground and excited state of Aluminum atom, so called transient steady state. The transient steady state was that aluminum atom had already absorbed a certain photon, but the valence electron had not transited to external orbit. That is to say, aluminum atom had not transited into excited state, but changed into a certain state called transient steady state between ground and excited state. Seen from the point of atomic energy level, the transient steady state is identical to the level of excited state. The transient steady state was one of the most important models storing energy. The hypothesis could roundly and reasonably explain our experimental results.展开更多
Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean ...Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean Optics,Inc)having the optical resolution of 0.06 nm was used to record the emission spectra from 220 to 720 nm.Elements like Al,Ba,Ca,Cr,Cu,P,Fe,K,Mg,Mn,Na,P,S,Sr,and Zn were found to present in the samples.The relative abundances of the observed elements were calculated through standard calibration curve method,integrated intensity ratio method,and weight percentage LIBS approach.LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of Inductively Coupled plasma-optical emission spectroscopy(ICP-OES).Limit of detection(LOD)of the LIBS system was also estimated for heavy metals.The experience gain through this work implies that LIBS could be highly applicable for testing the quality and purity of food products.展开更多
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current ...cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).展开更多
Argon ion laser was used as the induced light source and ethane(C2H4) was selected as the precursor gas,in the variety ranges of laser power from 0.5 W to 4.5 W and the pressure of the precursor gas from 225×133....Argon ion laser was used as the induced light source and ethane(C2H4) was selected as the precursor gas,in the variety ranges of laser power from 0.5 W to 4.5 W and the pressure of the precursor gas from 225×133.3 Pa to 680×133.3 Pa,the experiments of laser induced chemical vapor deposition were proceeded for fabrication of micro carbon pillar.In the experiments,the influences of power of laser and pressure of work gas on the diameter and length of micro carbon pillar were investigated,the variety on averaged growth rate of carbon pillar with the laser irradiation time and moving speed of focus was discussed.Based on experiment data,the micro carbon pillar with an aspect ratio of over 500 was built through the method of moving the focus.展开更多
We have been developing debris-free laser plasma sources for EUV lithography since 1996. Two types of debris-free sources, such as cryogenic target and gas-puff target laser plasma sources, were designed and built up ...We have been developing debris-free laser plasma sources for EUV lithography since 1996. Two types of debris-free sources, such as cryogenic target and gas-puff target laser plasma sources, were designed and built up in CIOMP. EUV radiation spectra of the sources with a variety of targets have been obtained by different ways.展开更多
A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV...A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.展开更多
Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this...Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this work,images of the luminous plasma,the spatial density distribution,and the plasma parameters are experimentally investigated by using fast ICCD photography,schlieren photography,and optical emission spectroscopy.Plasmas are produced by a 1 064 nm,15 ns Nd:YAG laser.Free expanding and splitting phenomena are observed in vacuum(at the pressure of about 1×10 3Pa)and air(at the pressure of 20 Pa)using fast photography,respectively.Meanwhile,shock waves formed in the atmospheric laser produced plasma are visualized by schlieren photography.The formation of shock waves is interpreted with the Sedov-Taylor theory,and an averaged expansion velocity about 375 m/s of the shock waves is estimated during 200~1 000 ns.Atmospheric air is found to have significant confinement effects on the plasma expansions compared to that in vacuum or low pressure ambient.Based on the optical emission spectroscopy,after 1 000 ns,at 0.6 mm above the target,the plasma temperature is about 7 800 K and the electron number density is approximately 0.64×1016cm-3.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasm...The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.展开更多
High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating...High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.展开更多
Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fibe...Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.展开更多
A preliminary experiment for triggering a plasma current quench by high Z impurities has been performed on the HL1M tokamak.Using injection of impurity with the higher charge of the nuclei allows us to increase the ra...A preliminary experiment for triggering a plasma current quench by high Z impurities has been performed on the HL1M tokamak.Using injection of impurity with the higher charge of the nuclei allows us to increase the radiation cooling.It can be a simple and potential approach for decreasing significantly the plasma thermal energy before a disruption and for safe termination of the plasma.展开更多
文摘Interferograms of laser-induced epoxy fiber reinforced polymer plasmas are obtained through aMach-Zehnder interferometry system.An improved digital double-exposure Fourier method is applied to extractinitial wrapped phases from interferograms,and then an improved phase unwrapping algorithm based on a maskand a branch-cut method is proposed to solve the problem of phase unwrapping.After the inverse Abel transfor-mation of the unwrapped phase,spatial distributions of the electron density of laser-induced epoxy fiber rein-forced polymer plasma at various delays are acquired.Results show that the measured electron density of theplasma is mainly distributed on the order of 10^18 cm^3.The experiment also indicates that the total amount oflaser plasma electrons changes slightly within the recorded time and the change of the electron density is approx-imately inversely proportional to the change of the plasma volume.
文摘With time and space resolved technique, we have recorded time resolved spectra of irradiation of the plasma induced by Nd: YAG laser ablating metal Aluminum in Ar, in which, laser pulse energy was set up to 145 mJ/pulse and the buffer pressure 100 kpa. The continuum radiation and special emission of Aluminum plasma were studied based on the records. According to time distribution of Al Ⅰ396.15 nm emission, we analyzed the time differences between characteristic and continuum radiation evolving. We tried to explain the time phases of characteristic radiation evolving with traditional theoretical model of atomic transition. As the result, we found that it was difficult to explain our experimental results with the model. In order to explain our experimental results, we need new model or to improve the traditional theoretical model of atomic transition.
文摘According to time distribution of Al Ⅰ396.15 nm emission in the plasma induced by laser ablating Aluminum, based on quantum mechanics, we have suggested a hypothesis of transient steady state of atom, which could give our experimental results overall and reasonable explanation in quantum. We suggested that there should be a certain atomic state between ground and excited state of Aluminum atom, so called transient steady state. The transient steady state was that aluminum atom had already absorbed a certain photon, but the valence electron had not transited to external orbit. That is to say, aluminum atom had not transited into excited state, but changed into a certain state called transient steady state between ground and excited state. Seen from the point of atomic energy level, the transient steady state is identical to the level of excited state. The transient steady state was one of the most important models storing energy. The hypothesis could roundly and reasonably explain our experimental results.
文摘Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean Optics,Inc)having the optical resolution of 0.06 nm was used to record the emission spectra from 220 to 720 nm.Elements like Al,Ba,Ca,Cr,Cu,P,Fe,K,Mg,Mn,Na,P,S,Sr,and Zn were found to present in the samples.The relative abundances of the observed elements were calculated through standard calibration curve method,integrated intensity ratio method,and weight percentage LIBS approach.LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of Inductively Coupled plasma-optical emission spectroscopy(ICP-OES).Limit of detection(LOD)of the LIBS system was also estimated for heavy metals.The experience gain through this work implies that LIBS could be highly applicable for testing the quality and purity of food products.
文摘cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).
基金Project supported by Scientific Research Fund of Centre South University of Forestry and TechnologyProject supported by Teaching Innovation Fund of Centre South University of Forestry and Technology
文摘Argon ion laser was used as the induced light source and ethane(C2H4) was selected as the precursor gas,in the variety ranges of laser power from 0.5 W to 4.5 W and the pressure of the precursor gas from 225×133.3 Pa to 680×133.3 Pa,the experiments of laser induced chemical vapor deposition were proceeded for fabrication of micro carbon pillar.In the experiments,the influences of power of laser and pressure of work gas on the diameter and length of micro carbon pillar were investigated,the variety on averaged growth rate of carbon pillar with the laser irradiation time and moving speed of focus was discussed.Based on experiment data,the micro carbon pillar with an aspect ratio of over 500 was built through the method of moving the focus.
文摘We have been developing debris-free laser plasma sources for EUV lithography since 1996. Two types of debris-free sources, such as cryogenic target and gas-puff target laser plasma sources, were designed and built up in CIOMP. EUV radiation spectra of the sources with a variety of targets have been obtained by different ways.
文摘A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.
基金Project supported by National Natural Science Foundation of China(51237006).
文摘Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this work,images of the luminous plasma,the spatial density distribution,and the plasma parameters are experimentally investigated by using fast ICCD photography,schlieren photography,and optical emission spectroscopy.Plasmas are produced by a 1 064 nm,15 ns Nd:YAG laser.Free expanding and splitting phenomena are observed in vacuum(at the pressure of about 1×10 3Pa)and air(at the pressure of 20 Pa)using fast photography,respectively.Meanwhile,shock waves formed in the atmospheric laser produced plasma are visualized by schlieren photography.The formation of shock waves is interpreted with the Sedov-Taylor theory,and an averaged expansion velocity about 375 m/s of the shock waves is estimated during 200~1 000 ns.Atmospheric air is found to have significant confinement effects on the plasma expansions compared to that in vacuum or low pressure ambient.Based on the optical emission spectroscopy,after 1 000 ns,at 0.6 mm above the target,the plasma temperature is about 7 800 K and the electron number density is approximately 0.64×1016cm-3.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.
基金Project(51975017) supported by the National Natural Science Foundation of ChinaProject(KZ202110005012) supported by the Scientific Research Project of Beijing Educational Committee+1 种基金ChinaProject(2018YFB1107500) supported by the National Key R&D Program of China。
文摘The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.
文摘High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.
文摘Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.
文摘A preliminary experiment for triggering a plasma current quench by high Z impurities has been performed on the HL1M tokamak.Using injection of impurity with the higher charge of the nuclei allows us to increase the radiation cooling.It can be a simple and potential approach for decreasing significantly the plasma thermal energy before a disruption and for safe termination of the plasma.