Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen...Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.展开更多
In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surem...In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.展开更多
A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substra...A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.展开更多
Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c mea...Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.展开更多
【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方...【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方法和构建高精确巷道三维模型技术。【方法】通过基于邻域半径R、最小邻域点数Imin、空间阈值σc、特征保持因子σs等参数自适应的分类巷道点云去噪算法,设计基于符号距离函数(signed distance functions,SDF)的深度学习隐式曲面重建方法。集成均值法、改进的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法和改进的双边滤波算法,构建分类处理技术框架,集成算法自动分析巷道点云数据中的噪声类型,并通过自适应机制高效去除不同尺度噪声,实现主体点云数据的深度净化。采用PointNet++提取巷道点云局部区域特征,导入神经隐式网络学习局部上下文信息,生成全局模型SDF,并结合移动立方体算法构建精细化的巷道三维模型。【结果和结论】以安徽省张集煤矿1∶1模拟巷道为实验场景,开展多维空间的巷道点云去噪与三维重建研究。研究结果表明:(1)集成算法可根据巷道场景与噪声类别动态调整去噪策略,具备自适应优化性能,产生的Ⅰ类和Ⅱ类误差分别为1.54%和5.37%,可在保留主体点云特征的同时有效去除大、小尺度及重复点三类噪声。(2)重建算法能在保持巷道模型精度与光滑度的同时有效减少孔洞,且精准刻画复杂位置的结构细节,重建巷道的平均偏差、标准偏差、均方根误差分别为0.037、0.040、0.041 m,满足智能化矿山建设高精度要求,为矿山数字化转型升级与智能精准开采提供高质量的三维数据支撑。展开更多
基金Project(51318010402)supported by General Armament Department Pre-Research Program of China
文摘Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.
文摘In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.
基金Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of ChinaProject(2020JJ4247) supported by the Natural Science Foundation of Hunan Province,ChinaProject(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China。
文摘A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.
文摘Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.
文摘【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方法和构建高精确巷道三维模型技术。【方法】通过基于邻域半径R、最小邻域点数Imin、空间阈值σc、特征保持因子σs等参数自适应的分类巷道点云去噪算法,设计基于符号距离函数(signed distance functions,SDF)的深度学习隐式曲面重建方法。集成均值法、改进的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法和改进的双边滤波算法,构建分类处理技术框架,集成算法自动分析巷道点云数据中的噪声类型,并通过自适应机制高效去除不同尺度噪声,实现主体点云数据的深度净化。采用PointNet++提取巷道点云局部区域特征,导入神经隐式网络学习局部上下文信息,生成全局模型SDF,并结合移动立方体算法构建精细化的巷道三维模型。【结果和结论】以安徽省张集煤矿1∶1模拟巷道为实验场景,开展多维空间的巷道点云去噪与三维重建研究。研究结果表明:(1)集成算法可根据巷道场景与噪声类别动态调整去噪策略,具备自适应优化性能,产生的Ⅰ类和Ⅱ类误差分别为1.54%和5.37%,可在保留主体点云特征的同时有效去除大、小尺度及重复点三类噪声。(2)重建算法能在保持巷道模型精度与光滑度的同时有效减少孔洞,且精准刻画复杂位置的结构细节,重建巷道的平均偏差、标准偏差、均方根误差分别为0.037、0.040、0.041 m,满足智能化矿山建设高精度要求,为矿山数字化转型升级与智能精准开采提供高质量的三维数据支撑。