Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this stud...Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.展开更多
Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that w...Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved.In this context,nerve preservation is one of the key challenges in any surgical procedure.One example is the treatment of parotid gland pathologies,where the facial nerve(N.VII) and its main branches run through and fan out inside the glands parenchyma.A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems.In the present study,Laser Induced Breakdown Spectroscopy(LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model.The LIBS results obtained in this preliminary experiment suggest that the measured spectra,containing atomic and molecular emissions,can be used to differentiate between the two tissue types.The measurements and differentiation were performed in open air and under normal stray light conditions.展开更多
Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to...Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normaliza...An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.展开更多
In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spec...In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.展开更多
As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly...As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter ...The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.展开更多
Laser-induced breakdown spectroscopy(LIBS) is regarded as a promising technique for realtime sorting of scrap metals due to its capability of fast multi-elemental and in-air analysis. This work reports a method for si...Laser-induced breakdown spectroscopy(LIBS) is regarded as a promising technique for realtime sorting of scrap metals due to its capability of fast multi-elemental and in-air analysis. This work reports a method for signal processing which ensures high accuracy and high speed during similar metal sorting by LIBS. Similar metals such as aluminum alloys or stainless steel are characterized by nearly the same constituent elements with slight variations in elemental concentration depending on metal type. In the proposed method, the original data matrix is substantially reduced for fast processing by selecting new input variables(spectral lines) using the information for the constituent elements of similar metals. Specifically, principal component analysis(PCA) of full-spectra LIBS data was performed and then, based on the loading plots, the input variables of greater significance were selected in the order of higher weights for each constituent element. The results for the classification test with aluminum alloy, copper alloy,stainless steel and cast steel showed that the classification accuracy of the proposed method was nearly the same as that of full-spectra PCA, but the computation time was reduced by a factor of 20 or more. The results demonstrated that incorporating the information for constituent elements can significantly accelerate classification speed without loss of accuracy.展开更多
Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LI...Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.展开更多
The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphi...The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphire laser radiation with pulse duration 〈45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection.展开更多
Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). Th...Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.展开更多
The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical perfo...The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy(LIBS).The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances(LIs). Calibration curves for both Ag(I) line(4d^(10)5s^2S_(1/2)→4d^(10)5p^2P_(1/2) at 338.28 nm) and Zn(I) line(4s5s^3S_1→4s4p^3P_2 at 481.053 nm) have been determined at LI of 5.86?×?10^(10)W cm^(-2). Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting(OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R^2?=?0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.展开更多
The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a hig...The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.展开更多
Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and in...Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and industry due to its unique analytical features such as little or no sample preparation,simultaneous multi-elemental analysis,and remote sensing etc[2-4].Restrained from the highcost and poor reliability of instruments back then,the research popularity of LIBS declined quickly after a few years of initial mania of LIBS study.Since the 1990s,benefiting from the significant development of the hardware setups including laser,spectrometer,and ICCD,the'LIBS fever,re-emerged with continuous progress achieved in various applications as well as fundamental studies for the past two decades.In 2004,James D Winefordner,a prestigious an alytical scientist,crowned LIBS as a'future superstar5 for chemical analysis[5],marking the great potential of LIBS.However,on the way of fully commercialization and industrialization,LIBS is facing three big challenges:(1)to improve the quantitative analysis performance,particularly the repeatability and reproducibility performance;(2)to reduce the instrumental cost;(3)to improve the long-term stability and robustness for industrial applications.To finally transform LIBS from'future superstar,to'superstar5,joint effort of worldwide LIBS community is needed[6].展开更多
Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was inv...Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.展开更多
Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement's accuracy and precision, a new internal standardization scheme, which we named changed intern...Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement's accuracy and precision, a new internal standardization scheme, which we named changed internal standardization, was compared with the traditional internal standardization and no internal standardization for the analysis of inorganic elements. The new internal standardization scheme used the atomic line of carbon at 247.86 nm and the molecular band of CN at 388.34 nm and C2 at 516.32 nm to normalize the lines of inorganic elements that were distributed in the same spectral channel. The performance of the utilization of the new internal standardization scheme was evaluated using a set of coal samples, including twenty calibration samples and five validation samples. The results show that the coefficients of determination R2 and the slope of calibration models coupled with changed internal standard- ization are better than that of the calibration models coupled with fixed internal standardization and no internal standardization. Moreover, the measurement accuracy and reproducibility of changed internal standardization for the analysis of five validation samples also yielded further improvement. The results that we obtained suggest that changed internal standardization could compensate for the matrix effects, as well as the influence of the difference in the spectral response of the light collection system.展开更多
Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a l...Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the 'drift' obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants.展开更多
In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark opt...In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.展开更多
基金supported by the R&D Center for Valuable Recycling (Global-Top R&D Program)of the Ministry of Environment (No.2016002250003)。
文摘Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.
基金the funding of the Erlangen Graduate School in Advanced Optical Technologies(SAOT)by the Deutsche Forschungsgemeinschaft(German Research Foundation-DFG) within the framework of the Initiative for Excellence
文摘Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved.In this context,nerve preservation is one of the key challenges in any surgical procedure.One example is the treatment of parotid gland pathologies,where the facial nerve(N.VII) and its main branches run through and fan out inside the glands parenchyma.A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems.In the present study,Laser Induced Breakdown Spectroscopy(LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model.The LIBS results obtained in this preliminary experiment suggest that the measured spectra,containing atomic and molecular emissions,can be used to differentiate between the two tissue types.The measurements and differentiation were performed in open air and under normal stray light conditions.
文摘Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2017YFE0301304)National Natural Science Foundation of China (Nos. 11 475 039, 11 605 023, 11 705 020)+2 种基金China Postdoctoral Science Foundation (Nos. 2016M591423, 2017T100172, 2018M630285)the Fundamental Research Funds for the Central Universities (Nos. DUT15RC(3)072, DUT17RC(4)53, DUT18LK38)Liaoning Provincial Natural Science Foundation of China (No. 20 170 540 153)
文摘An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.
基金supported by National Natural Science Foundation of China(No.61178022)the Natural Science Foundation of Jilin Province,China(No.201215132)the Doctoral Program of High Education of China(No.20112216120006)
文摘In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.
基金supported by National High Technology Research and Development Program of China (863 Program. No. 2013AA102402)
文摘As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金supported by National Natural Science Foundation of China (No. 21735005)the Science and Technology Program of Anhui Province (No. 1501041119)+1 种基金the Science and Technology Major Special Program of Anhui Province (No. 15CZZ04125)National Key Research and Development Plan of China (No. 2016YFD0800902-2)
文摘The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.
基金supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250003)
文摘Laser-induced breakdown spectroscopy(LIBS) is regarded as a promising technique for realtime sorting of scrap metals due to its capability of fast multi-elemental and in-air analysis. This work reports a method for signal processing which ensures high accuracy and high speed during similar metal sorting by LIBS. Similar metals such as aluminum alloys or stainless steel are characterized by nearly the same constituent elements with slight variations in elemental concentration depending on metal type. In the proposed method, the original data matrix is substantially reduced for fast processing by selecting new input variables(spectral lines) using the information for the constituent elements of similar metals. Specifically, principal component analysis(PCA) of full-spectra LIBS data was performed and then, based on the loading plots, the input variables of greater significance were selected in the order of higher weights for each constituent element. The results for the classification test with aluminum alloy, copper alloy,stainless steel and cast steel showed that the classification accuracy of the proposed method was nearly the same as that of full-spectra PCA, but the computation time was reduced by a factor of 20 or more. The results demonstrated that incorporating the information for constituent elements can significantly accelerate classification speed without loss of accuracy.
基金The project supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20020487013) and bythe Key Program for International Cooperation of Science and Technology of China (No. 2001 CB711203)
文摘Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.
基金supported by the Russian Science Foundation(agreement#14-50-00034)(measurements of limit of detection)Russian Foundation for Basic Research(NK 15-32-20878/15)obtained in the frame of "Organization of Scientific Research"in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation
文摘The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphire laser radiation with pulse duration 〈45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11211120156, 11274053, 11074027, 61178022, and 60978014)the Science and Technology Department of Jilin Province, China (Grant Nos. 20100521, 20100168, and 20111812)the SRF for ROCS, SEM
文摘Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.
基金supported by National Natural Science Foundation of China (Nos. 11475039, 11705020, 11605023)Liaoning Provincial Natural Science Foundation of China (No. 20170540153)
文摘The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy(LIBS).The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances(LIs). Calibration curves for both Ag(I) line(4d^(10)5s^2S_(1/2)→4d^(10)5p^2P_(1/2) at 338.28 nm) and Zn(I) line(4s5s^3S_1→4s4p^3P_2 at 481.053 nm) have been determined at LI of 5.86?×?10^(10)W cm^(-2). Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting(OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R^2?=?0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.
基金supported by King Saud University, Deanship of Scientific Research, College of Science Research Center
文摘The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.
文摘Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and industry due to its unique analytical features such as little or no sample preparation,simultaneous multi-elemental analysis,and remote sensing etc[2-4].Restrained from the highcost and poor reliability of instruments back then,the research popularity of LIBS declined quickly after a few years of initial mania of LIBS study.Since the 1990s,benefiting from the significant development of the hardware setups including laser,spectrometer,and ICCD,the'LIBS fever,re-emerged with continuous progress achieved in various applications as well as fundamental studies for the past two decades.In 2004,James D Winefordner,a prestigious an alytical scientist,crowned LIBS as a'future superstar5 for chemical analysis[5],marking the great potential of LIBS.However,on the way of fully commercialization and industrialization,LIBS is facing three big challenges:(1)to improve the quantitative analysis performance,particularly the repeatability and reproducibility performance;(2)to reduce the instrumental cost;(3)to improve the long-term stability and robustness for industrial applications.To finally transform LIBS from'future superstar,to'superstar5,joint effort of worldwide LIBS community is needed[6].
基金supported by National Key Research and Development Program of China (No. 2016YFC0302102)Fundamental Research Funds for the Central Universities (No. 201822003)
文摘Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.
基金supported by Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology of China(No.SKL2013KF03)National Natural Science Foundation of China(Nos.51206055,51476061)+3 种基金the Fundamental Research Funds for the Central Universities of China(No.2014ZZ0014)the New Star of Pearl River on Science and Technology of Guangzhou,China(No.2014J2200054)the Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes of China(No.KLB10004)Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,China(No.2013A061401005)
文摘Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement's accuracy and precision, a new internal standardization scheme, which we named changed internal standardization, was compared with the traditional internal standardization and no internal standardization for the analysis of inorganic elements. The new internal standardization scheme used the atomic line of carbon at 247.86 nm and the molecular band of CN at 388.34 nm and C2 at 516.32 nm to normalize the lines of inorganic elements that were distributed in the same spectral channel. The performance of the utilization of the new internal standardization scheme was evaluated using a set of coal samples, including twenty calibration samples and five validation samples. The results show that the coefficients of determination R2 and the slope of calibration models coupled with changed internal standard- ization are better than that of the calibration models coupled with fixed internal standardization and no internal standardization. Moreover, the measurement accuracy and reproducibility of changed internal standardization for the analysis of five validation samples also yielded further improvement. The results that we obtained suggest that changed internal standardization could compensate for the matrix effects, as well as the influence of the difference in the spectral response of the light collection system.
基金supported by National Natural Science Foundation of China(Nos.61127017,61378047,61205216,61178009,61108030,61475093,and 61275213)the National Key Technology R&D Program of China(No.2013BAC14B01)+2 种基金the 973 Program of China(No.2012CB921603)the Shanxi Natural Science Foundation,China(Nos.2013021004-1,2012021022-1)the Shanxi Scholarship Council of China(Nos.2013-011 and 2013-01)
文摘Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the 'drift' obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants.
基金supported by a Special Fund for Nationally Important Instruments of China(No.2012YQ20018208)
文摘In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.