NieAl alloy coatings with different Y additions are prepared on 45#medium steel by laser cladding. The influence of Y contents on the microstructure and properties of NieAl alloy coatings is investigated using X-ray d...NieAl alloy coatings with different Y additions are prepared on 45#medium steel by laser cladding. The influence of Y contents on the microstructure and properties of NieAl alloy coatings is investigated using X-ray diffraction, scanning electron microscopy, electron probe microanalyzer, Vickers hardness tester, friction wear testing machine, and thermal analyzer. The results show that the cladding layers are mainly composed of NiAl dendrites, and the dendrites are gradually refined with the increase in Y additions. The purification effect of Y can effectively prevent Al2O3oxide from forming. However, when the atomic percent of Y addition exceeds 1.5%, the extra Y addition will react with O to form Y2O3oxide, even to form Al5Y3O12oxide, depending on the amount of Y added. The Y addition in a range of 1.5e3.5 at.% reduces the hardness and anti-attrition of cladding layer, but improves obviously its wear and oxidation resistances.展开更多
Thermally stable nano-size ceramic particles are the preferred reinforcements for superalloys as they improve the alloys'microstructural stability and high-temperature properties.In this work,very dense and crack-...Thermally stable nano-size ceramic particles are the preferred reinforcements for superalloys as they improve the alloys'microstructural stability and high-temperature properties.In this work,very dense and crack-free carbidereinforced GTD222(nickel-based superalloy)composites were prepared via selective laser melting(SLM).The distribution of TiC nanoparticles presents a three-dimensional(3D)network structure in the SLMed TiC/GTD222 composite.Mechanical testing revealed that the SLMed TiC/GTD222 composite has superior strength(UTS?1320 MPa,YS?1100 MPa)compared to the SLMed GTD222 superalloy.The GTD22 alloy reinforced with carbide nanoparticles’distinctive microstructure and its excellent mechanical properties for is discussed.展开更多
文摘NieAl alloy coatings with different Y additions are prepared on 45#medium steel by laser cladding. The influence of Y contents on the microstructure and properties of NieAl alloy coatings is investigated using X-ray diffraction, scanning electron microscopy, electron probe microanalyzer, Vickers hardness tester, friction wear testing machine, and thermal analyzer. The results show that the cladding layers are mainly composed of NiAl dendrites, and the dendrites are gradually refined with the increase in Y additions. The purification effect of Y can effectively prevent Al2O3oxide from forming. However, when the atomic percent of Y addition exceeds 1.5%, the extra Y addition will react with O to form Y2O3oxide, even to form Al5Y3O12oxide, depending on the amount of Y added. The Y addition in a range of 1.5e3.5 at.% reduces the hardness and anti-attrition of cladding layer, but improves obviously its wear and oxidation resistances.
基金The authors grateful acknowledge the financial support of the National Natural Science Foundation of China under Projects No.51871147 and 51704195the China Postdoctoral Science Foundation under Project No.19Z102060057+2 种基金the National Science and Technology Major Project under Project No.2017-VI-0013-0085the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Project No.51821001the Aviation Power Fund under Project No.6141B090324.
文摘Thermally stable nano-size ceramic particles are the preferred reinforcements for superalloys as they improve the alloys'microstructural stability and high-temperature properties.In this work,very dense and crack-free carbidereinforced GTD222(nickel-based superalloy)composites were prepared via selective laser melting(SLM).The distribution of TiC nanoparticles presents a three-dimensional(3D)network structure in the SLMed TiC/GTD222 composite.Mechanical testing revealed that the SLMed TiC/GTD222 composite has superior strength(UTS?1320 MPa,YS?1100 MPa)compared to the SLMed GTD222 superalloy.The GTD22 alloy reinforced with carbide nanoparticles’distinctive microstructure and its excellent mechanical properties for is discussed.