期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Influence of Si Content on the Mechanical and Tribological Properties of Laser Cladding FeCoNiBSiNb Amorphous Alloy Composite Materials
1
作者 DU Xian YU Dongxin +3 位作者 LIU Jian CAI Zhihai HE Dongyu WANG Xiaolong 《材料导报》 北大核心 2025年第12期156-162,共7页
Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and... Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance. 展开更多
关键词 laser cladding FeCoNiBSiNb composite layer tribological property Si content
在线阅读 下载PDF
Effect of high-speed laser cladding on microstructure and corrosion resistance of CoCrFeNiMo_(0.2) high-entropy alloy 被引量:6
2
作者 MA Xu-feng SUN Yao-ning +4 位作者 CHENG Wang-jun CHONG Zhen-zeng HUANG Liu-fei MENG A-cong JIANG Li-heng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3436-3446,共11页
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters... In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s. 展开更多
关键词 high-entropy alloy high-speed laser cladding MICROSTRUCTURE corrosion resistance
在线阅读 下载PDF
Experimental study of laser cladding process and prediction of process parameters by artificial neural network(ANN) 被引量:3
3
作者 Rashi TYAGI Shakti KUMAR +2 位作者 Mohammad Shahid RAZA Ashutosh TRIPATHI Alok Kumar DAS 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3489-3502,共14页
Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combin... Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm. 展开更多
关键词 laser cladding Taguchi orthogonal array artificial neural network MICROHARDNESS MICROSTRUCTURE
在线阅读 下载PDF
Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature 被引量:3
4
作者 刘勇 刘素芹 王顺兴 《Journal of Central South University of Technology》 EI 2005年第4期403-405,共3页
Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t... Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature. 展开更多
关键词 Ni-based laser cladding layer MICROSTRUCTURE abrasion wear behavior high temperature
在线阅读 下载PDF
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
5
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
在线阅读 下载PDF
Microstructure evolution and tribological behavior of TiC/Ti_(2)AlC core-shell particle-reinforced composite coatings
6
作者 LIU Si-yuan MO Tai-qian +3 位作者 LIN Bo WANG Xue-jian XIAO Hua-qiang MA Kai 《Journal of Central South University》 2025年第9期3255-3271,共17页
TiC/Ti_(2)AlC core-shell structure reinforced Ti-based composite coating was prepared by laser cladding technology.The effect of Ti_(2)AlC content on the microstructure and mechanical behavior of the coating was studi... TiC/Ti_(2)AlC core-shell structure reinforced Ti-based composite coating was prepared by laser cladding technology.The effect of Ti_(2)AlC content on the microstructure and mechanical behavior of the coating was studied.The results showed that the reinforced phase was mainly TiC/Ti_(2)AlC MAX phase core-shell structure at 20%Ti_(2)AlC content.According to the synthesis mechanism,Ti_(2)AlC nucleated on TiC through the diffusion of Al atoms to further generate the core-shell structure.The friction and wear test results showed that the wear resistance of the coating was significantly improved under the load distribution effect of the core-shell structure.The friction coefficient decreased to 0.342,and the wear rate reached 8.19×10^(−5)mm^(3)/(N·m),which was only 47.07%of TC4 substrate. 展开更多
关键词 laser cladding MAX phase decomposition core-shell structure frictional wear
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部