The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly m...This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.展开更多
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping...Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).展开更多
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou...As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used...Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.展开更多
This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation...This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.展开更多
In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-...In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-surface was performed with the objective of studying the effect of parameters such as charge structure, free-surface and rock compressive strength on rock blasting.The model experiments indicate that:1) the smaller the rock compressive strength and density, the more distinctive the cavity expanding action by blasting;2) the powder factor in an air-decoupling charge structure is larger than that in a coupling charge structure, i.e., the explosive energy in an air-decoupling charge structure transferred to the rocks is less than that in a coupling charge structure;3) a free-surface improves the utilizations of explosive energy;4) an air-decoupling charge structure helps to maintain the integrity and stability of wall rock in controlled perimeter blasting, such as in roadways and tunnel excavation by drilling and blasting.展开更多
To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage ...To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.展开更多
A large number of high-voltage power transmission towers have recently been constructed in mining areas prone to subsidence. In order to ensure the safety of the transmission towers and the safe operation of transmiss...A large number of high-voltage power transmission towers have recently been constructed in mining areas prone to subsidence. In order to ensure the safety of the transmission towers and the safe operation of transmission systems, it is imperative to carry out research on the anti-deformation performance of transmission towers. In our study, we performed experiments on the anti-deformation performance of a transmission tower in a subsidence area on a scale model with a geometric scale ratio of 1:5 and analyzed the failure mechanism of the tower members. The results show that, when the axial distance between two supports changes, destabilization failure most likely occurs in the members of the bottom transverse layer because some parts of the main diagonal member bars yield under the action of compression. The failure mechanism of the tower members basically coincides with the lever principle.展开更多
Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality...Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.展开更多
The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufac...The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil(CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3 Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.展开更多
This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional micr...This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional microphone. With the signal-processing technique, a receiving and analyzing system, for the measurements of lateral energy fraction in the scale model is realized.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed fr...Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.展开更多
Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring...Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.展开更多
Acid mine drainage(AMD) is commonly treated by neutralization with alkaline substances.This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralizati...Acid mine drainage(AMD) is commonly treated by neutralization with alkaline substances.This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralization capacity(BNC) of the AMD.Detailed explanation of titration curves requires modeling with a hydro-chemical model.In this study the titration curves of water samples from the drainage of the As Pontes mine and the corresponding dumps have been investigated and six buffers are selerted by analyzing those curves.Titration curves have been simulated by a reactive transport model to discover the detailed buffering mechanisms.These simulations show seven regions involving different buffering mechanism.The BNC is primarily from buffers of dissolved Fe,Al and hydrogen sulfate.The BNC can be approximated by:BNC = 3(C_(Fe) + C_(Al)) + 0.05C_(sulfate),where the units are mol/L.The BNC of the sample from the mine is 9.25×10^(-3) mol/L and that of the dumps sample is 1.28×10^(-2) mol/L展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金supported by the National Key R&D Program of China with Grant number 2019YFB1803400the National Natural Science Foundation of China under Grant number 62071114the Fundamental Research Funds for the Central Universities of China under grant numbers 3204002004A2 and 2242022k30005。
文摘This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.
基金the project SILVARSTAR funded from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 101015442。
文摘Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).
基金This work was supported by National Key R&D Program of China under Grant 2018YFB1800802in part by the National Natural Science Foundation of China under Grant No.61771488,No.61631020 and No.61827801+1 种基金in part by State Key Laboratory of Air Traffic Management System and Technology under Grant No.SKLATM201808in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
基金The financial supports received from the National Natural Science Foundation of China(21522609,21636009 and 21878328)the National Key Research and Development Program of China(Nos.2017YFC0307302,2016YFC0304003)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462018BJC004)Beijing Science and Technology Program,China(No.Z181100005118010)。
文摘Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.
文摘This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.
文摘In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-surface was performed with the objective of studying the effect of parameters such as charge structure, free-surface and rock compressive strength on rock blasting.The model experiments indicate that:1) the smaller the rock compressive strength and density, the more distinctive the cavity expanding action by blasting;2) the powder factor in an air-decoupling charge structure is larger than that in a coupling charge structure, i.e., the explosive energy in an air-decoupling charge structure transferred to the rocks is less than that in a coupling charge structure;3) a free-surface improves the utilizations of explosive energy;4) an air-decoupling charge structure helps to maintain the integrity and stability of wall rock in controlled perimeter blasting, such as in roadways and tunnel excavation by drilling and blasting.
基金funding by the National Natural Science Foundation of China(Nos.51474039 and 51404046)the Project of Shanxi Provincial Federation of Coalbed Methane Research(No.2013012010)the Science Foundation of North University of China(No.XJJ2016033)
文摘To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.
基金the National Natural Science Foundation of China (No. 50004008)the Science Fund of China University of Mining and Technology (No. OB061045)
文摘A large number of high-voltage power transmission towers have recently been constructed in mining areas prone to subsidence. In order to ensure the safety of the transmission towers and the safe operation of transmission systems, it is imperative to carry out research on the anti-deformation performance of transmission towers. In our study, we performed experiments on the anti-deformation performance of a transmission tower in a subsidence area on a scale model with a geometric scale ratio of 1:5 and analyzed the failure mechanism of the tower members. The results show that, when the axial distance between two supports changes, destabilization failure most likely occurs in the members of the bottom transverse layer because some parts of the main diagonal member bars yield under the action of compression. The failure mechanism of the tower members basically coincides with the lever principle.
文摘Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.
文摘The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil(CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3 Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.
文摘This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional microphone. With the signal-processing technique, a receiving and analyzing system, for the measurements of lateral energy fraction in the scale model is realized.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
文摘Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.
基金Project supported by the National Natural Science Foundation of China(Grant No.11872033)the Beijing Natural Science Foundation,China(Grant No.3172017)。
文摘Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.
文摘Acid mine drainage(AMD) is commonly treated by neutralization with alkaline substances.This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralization capacity(BNC) of the AMD.Detailed explanation of titration curves requires modeling with a hydro-chemical model.In this study the titration curves of water samples from the drainage of the As Pontes mine and the corresponding dumps have been investigated and six buffers are selerted by analyzing those curves.Titration curves have been simulated by a reactive transport model to discover the detailed buffering mechanisms.These simulations show seven regions involving different buffering mechanism.The BNC is primarily from buffers of dissolved Fe,Al and hydrogen sulfate.The BNC can be approximated by:BNC = 3(C_(Fe) + C_(Al)) + 0.05C_(sulfate),where the units are mol/L.The BNC of the sample from the mine is 9.25×10^(-3) mol/L and that of the dumps sample is 1.28×10^(-2) mol/L