A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin...A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.展开更多
As an energy generating equipment, the engine-generator set supplies power to the electric transmission. Therefore, its control is one of the key technologies of electric vehicles. Based on the discussion about the de...As an energy generating equipment, the engine-generator set supplies power to the electric transmission. Therefore, its control is one of the key technologies of electric vehicles. Based on the discussion about the demands to the engine-generator set in tracked vehicles, the detailed function of engine-generator and the control strategy are determined. The hardware and software of the control system are also developed and tested in a prototype vehicle. The experiment results show that the control system has good reliability and can satisfy the power requirements of vehicles under all operating conditions.展开更多
When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus...When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus.In order to predict and analyze the rationality of cooling system in the virtual engine compartment,the numerical simulation of airflow fields in the engine compartment by using computational fluid dynamics(CFD) technique is necessary.An armored vehicle with electric transmission in the research is taken as the research object.The physical model and mathematical model for the computation of 3D air flow and heat transfer in the engine compartment of an armored vehicle with electric transmission is established.Turbulent flow in the compartment is described by using the standard k-ε two-equation turbulence model.The temperature and velocity fields of 3D air flow in the engine compartment are numerically simulated and analyzed based on different fan's flux.A theoretical basis for determination of the fan's flux is given by the simulation results.The positions of the air-vent shutter are analyzed.The simulation results show that the different positions of the air-vent shutter can lead to different cooling efficiencies.展开更多
Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human f...Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.展开更多
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel...The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.展开更多
The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling syst...The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.展开更多
The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figur...The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figured out under the condition of satisfying adequate steering performance of the tracked vehicles.General opinions on the two projects are brought forward and conclusions are drawn.展开更多
针对线控转向(steer by wire, SBW)系统主动转向时面临的系统参数不确定性、轮胎回正力矩阻碍、转向电机电磁特性耦合等非线性干扰问题,提出一种自适应抗扰转角控制策略。采用径向基函数神经网络和鲁棒滑模理论设计外环转角控制器,自适...针对线控转向(steer by wire, SBW)系统主动转向时面临的系统参数不确定性、轮胎回正力矩阻碍、转向电机电磁特性耦合等非线性干扰问题,提出一种自适应抗扰转角控制策略。采用径向基函数神经网络和鲁棒滑模理论设计外环转角控制器,自适应补偿SBW系统参数不确定性和轮胎回正力矩阻碍。在内环电流控制器中引入线性自抗扰控制应对转向执行电机电磁特性耦合问题,提高SBW系统动态响应性能。仿真和硬件在环试验结果表明,设计的控制策略能够帮助SBW在多种工况中维持转角稳态跟随误差在1.5°内。展开更多
在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with varia...在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。展开更多
基金supported by the National Natural Science Foundation of China(6140321061601228+3 种基金61603191)the Natural Science Foundation of Jiangsu(BK20161021)the Nanjing University of Posts and Telecommunications Science Foundation(NY214173)the Open Program of Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing(3DL201607)
文摘A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.
文摘As an energy generating equipment, the engine-generator set supplies power to the electric transmission. Therefore, its control is one of the key technologies of electric vehicles. Based on the discussion about the demands to the engine-generator set in tracked vehicles, the detailed function of engine-generator and the control strategy are determined. The hardware and software of the control system are also developed and tested in a prototype vehicle. The experiment results show that the control system has good reliability and can satisfy the power requirements of vehicles under all operating conditions.
文摘When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus.In order to predict and analyze the rationality of cooling system in the virtual engine compartment,the numerical simulation of airflow fields in the engine compartment by using computational fluid dynamics(CFD) technique is necessary.An armored vehicle with electric transmission in the research is taken as the research object.The physical model and mathematical model for the computation of 3D air flow and heat transfer in the engine compartment of an armored vehicle with electric transmission is established.Turbulent flow in the compartment is described by using the standard k-ε two-equation turbulence model.The temperature and velocity fields of 3D air flow in the engine compartment are numerically simulated and analyzed based on different fan's flux.A theoretical basis for determination of the fan's flux is given by the simulation results.The positions of the air-vent shutter are analyzed.The simulation results show that the different positions of the air-vent shutter can lead to different cooling efficiencies.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Foundation of Air Force Engineering University(KGD08101604)
文摘Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.
基金Projects(51005115,51205191)supported by the National Natural Science Foundation of ChinaProject(QC201101)supported by the Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province,China+1 种基金Project(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,ChinaProjects(NS2013015,NS2012086)supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics,and NUAA Research Funding,China
文摘The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.
文摘The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.
文摘The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figured out under the condition of satisfying adequate steering performance of the tracked vehicles.General opinions on the two projects are brought forward and conclusions are drawn.
文摘针对线控转向(steer by wire, SBW)系统主动转向时面临的系统参数不确定性、轮胎回正力矩阻碍、转向电机电磁特性耦合等非线性干扰问题,提出一种自适应抗扰转角控制策略。采用径向基函数神经网络和鲁棒滑模理论设计外环转角控制器,自适应补偿SBW系统参数不确定性和轮胎回正力矩阻碍。在内环电流控制器中引入线性自抗扰控制应对转向执行电机电磁特性耦合问题,提高SBW系统动态响应性能。仿真和硬件在环试验结果表明,设计的控制策略能够帮助SBW在多种工况中维持转角稳态跟随误差在1.5°内。
文摘在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。