To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of over...To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.展开更多
To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-...To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.展开更多
Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition...Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition of intermittent ventilation in the tunnel.According to the actual parameters of the tunnel,a numerical calculation model was established.The spatial-temporal variation of gas concentration in the fully mechanized working face under the condition of intermittent ventilation was calculated by using the commercial package Fluent,and the correctness of the calculated results was verified by the actual monitoring data of the mine.Firstly,the gas concentration was calculated under different wind velocities at driving face in coal tunnel,and the result showed that the gas can be carried effectively by the wind when the wind velocity is about 1.8 m/s.Secondly,the distributions of wind velocity and gas concentration at driving face were studied at 1.8 m/s,and the result showed the gas concentration increased gradually with the distance close to the outlet,but the gas concentration almost kept constant at the height of driving face.Thirdly,the distribution of gas concentration was investigated with time after the ventilation was stopped and restarted,respectively.The gas concentration of test point gradually increased with the increment of downtime,when the downtime was 40 min,the gas concentration of test point 3 reached the maximum value.The gas concentration increased gradually and reached the maximum after10 min of restart,then sharply decreased and kept constant.展开更多
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden ...To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.展开更多
In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the e...In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.展开更多
The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to great...The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to greatly increase probability of accident occurrence. To reveal the distribution of high stress around working faces, we put forward the mode-I-crack compression model. In this model, the goaf following a working face is regarded as a mode-I crack in an infinite plate, and the self-gravity of overlaying strata is transformed into an uniform pressure applied normal to the upper edge of the model crack. Solving this problem is based on the Westergaard complex stress function. For comparison, the software RFPA-2D is also employed to simulate the same mining problem, and furthermore extendedly to calculate the stress interference induced by the simultaneous advances of two different working faces. The results show that, the area close to a working face or the goaf tail has the maximum stress, and the stress is distributed directly proportional to the square root of the advance and inversely proportional to the square root of the distance to the working face. The simultaneous advances of two neighboring working faces in different horizontals can lead to extremely high resultant stress in an interference area.展开更多
In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried ou...In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.展开更多
基金supported by the Key Project of National Natural Science Foundation of China (No. 51634001)the National Natural Science Foundation of China (Nos. 51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No. 2016YFC0801403)the Key Research Development Program of Jiangsu Province, China (No. BE2015040)
文摘To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.
基金Project 50674111 supported by the National Natural Science Foundation of China
文摘To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
基金funded by the National Natural Science Foundation of China (No. 51776217)the Fundamental Research Funds for the Central Universities of China (No. 2013XK08.2)
文摘Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition of intermittent ventilation in the tunnel.According to the actual parameters of the tunnel,a numerical calculation model was established.The spatial-temporal variation of gas concentration in the fully mechanized working face under the condition of intermittent ventilation was calculated by using the commercial package Fluent,and the correctness of the calculated results was verified by the actual monitoring data of the mine.Firstly,the gas concentration was calculated under different wind velocities at driving face in coal tunnel,and the result showed that the gas can be carried effectively by the wind when the wind velocity is about 1.8 m/s.Secondly,the distributions of wind velocity and gas concentration at driving face were studied at 1.8 m/s,and the result showed the gas concentration increased gradually with the distance close to the outlet,but the gas concentration almost kept constant at the height of driving face.Thirdly,the distribution of gas concentration was investigated with time after the ventilation was stopped and restarted,respectively.The gas concentration of test point gradually increased with the increment of downtime,when the downtime was 40 min,the gas concentration of test point 3 reached the maximum value.The gas concentration increased gradually and reached the maximum after10 min of restart,then sharply decreased and kept constant.
基金National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51327007, 51174157, and 51104118) for their support of this project
文摘To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.
文摘In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.
基金Projects 50774083 and 40811120546 supported by the National Natural Science Foundation of ChinaNCET-07-0803 by the Program for New Century Ex-cellent Talents in University 2005CB221502 by the National Basic Research Program of China
文摘The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to greatly increase probability of accident occurrence. To reveal the distribution of high stress around working faces, we put forward the mode-I-crack compression model. In this model, the goaf following a working face is regarded as a mode-I crack in an infinite plate, and the self-gravity of overlaying strata is transformed into an uniform pressure applied normal to the upper edge of the model crack. Solving this problem is based on the Westergaard complex stress function. For comparison, the software RFPA-2D is also employed to simulate the same mining problem, and furthermore extendedly to calculate the stress interference induced by the simultaneous advances of two different working faces. The results show that, the area close to a working face or the goaf tail has the maximum stress, and the stress is distributed directly proportional to the square root of the advance and inversely proportional to the square root of the distance to the working face. The simultaneous advances of two neighboring working faces in different horizontals can lead to extremely high resultant stress in an interference area.
基金the National Natural Science Foundation of China (No.51404249)the Basic Research Program of Jiangsu Province (No.BK20140201)the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support provided during this research
文摘In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.