期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的LSN-YOLOv8模型和无人机遥感图像的水稻稻曲病检测方法
1
作者
杨玉青
朱德泉
+4 位作者
刘凯旋
严从宽
孟凡凯
唐七星
廖娟
《江苏农业学报》
北大核心
2025年第5期905-915,共11页
本研究针对无人机采集的水稻稻曲病图像中存在的背景复杂、病斑目标小且与背景表征相似等问题,构建了一种水稻稻曲病检测模型LSN-YOLOv8。该模型以YOLOv8模型为基本框架,在骨干网络中融入大选择性核网络(LSKNet),通过动态调整感受野范...
本研究针对无人机采集的水稻稻曲病图像中存在的背景复杂、病斑目标小且与背景表征相似等问题,构建了一种水稻稻曲病检测模型LSN-YOLOv8。该模型以YOLOv8模型为基本框架,在骨干网络中融入大选择性核网络(LSKNet),通过动态调整感受野范围增强模型对小目标的特征提取能力;在骨干网络中加入坐标注意力机制(CA)模块,将病斑空间位置信息与通道注意力相结合,增强模型对关键区域的关注度同时减少背景干扰;利用梯度加权类激活映射(Grad-CAM)技术实现检测过程的可视化分析,为模型决策提供直观解释。为验证模型性能,利用无人机拍摄不同发病时期、不同背景条件下的水稻稻曲病图像,构建水稻稻曲病数据集,用于模型训练与测试。试验结果表明,本研究提出的LSN-YOLOv8模型精准度、召回率和交并比阈值为0.50时的平均精度值均值(mAP_(50))分别为94.8%、87.3%和92.3%,均高于YOLOv5、YOLOv7、YOLOv8、Faster R-CNN模型等经典目标检测模型。梯度加权类激活映射(Grad-CAM)技术可视化分析结果表明,LSN-YOLOv8模型能够更准确地聚焦于图像中的病害区域。本研究提出的LSN-YOLOv8模型可为稻曲病监测、病害防治和水稻抗病性鉴定提供技术支持。
展开更多
关键词
稻曲病
病害识别
无人机
YOLOv8模型
大选择性核网络(
lsknet
)
坐标注意力机制(CA)
在线阅读
下载PDF
职称材料
题名
基于改进的LSN-YOLOv8模型和无人机遥感图像的水稻稻曲病检测方法
1
作者
杨玉青
朱德泉
刘凯旋
严从宽
孟凡凯
唐七星
廖娟
机构
安徽农业大学工学院
安徽农业大学新农村发展研究院皖东综合试验站
出处
《江苏农业学报》
北大核心
2025年第5期905-915,共11页
基金
国家重点研发计划项目(2022YFD2001801-3)
国家自然科学基金项目(32201665)。
文摘
本研究针对无人机采集的水稻稻曲病图像中存在的背景复杂、病斑目标小且与背景表征相似等问题,构建了一种水稻稻曲病检测模型LSN-YOLOv8。该模型以YOLOv8模型为基本框架,在骨干网络中融入大选择性核网络(LSKNet),通过动态调整感受野范围增强模型对小目标的特征提取能力;在骨干网络中加入坐标注意力机制(CA)模块,将病斑空间位置信息与通道注意力相结合,增强模型对关键区域的关注度同时减少背景干扰;利用梯度加权类激活映射(Grad-CAM)技术实现检测过程的可视化分析,为模型决策提供直观解释。为验证模型性能,利用无人机拍摄不同发病时期、不同背景条件下的水稻稻曲病图像,构建水稻稻曲病数据集,用于模型训练与测试。试验结果表明,本研究提出的LSN-YOLOv8模型精准度、召回率和交并比阈值为0.50时的平均精度值均值(mAP_(50))分别为94.8%、87.3%和92.3%,均高于YOLOv5、YOLOv7、YOLOv8、Faster R-CNN模型等经典目标检测模型。梯度加权类激活映射(Grad-CAM)技术可视化分析结果表明,LSN-YOLOv8模型能够更准确地聚焦于图像中的病害区域。本研究提出的LSN-YOLOv8模型可为稻曲病监测、病害防治和水稻抗病性鉴定提供技术支持。
关键词
稻曲病
病害识别
无人机
YOLOv8模型
大选择性核网络(
lsknet
)
坐标注意力机制(CA)
Keywords
rice false smut
disease identification
unmanned aerial vehicle
YOLOv8 model
large
selective
kernel
network
(
lsknet
)
coordinate attention mechanism(CA)
分类号
S435.115 [农业科学—农业昆虫与害虫防治]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的LSN-YOLOv8模型和无人机遥感图像的水稻稻曲病检测方法
杨玉青
朱德泉
刘凯旋
严从宽
孟凡凯
唐七星
廖娟
《江苏农业学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部