Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedan...Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.展开更多
Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by ...Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by three-dimensional elastodynamic theory and those in the pile are simulated by Rayleigh-Love rod theory. The vertical and radial displacements of the outer and inner soil are obtained by utilizing Laplace transform technique and differentiation on the governing equations of soils. Then, based on the continuous conditions between the pile and soils, the displacements of the pile are derived. The frequency domain velocity admittance and time domain velocity response of the pile top are also presented. The solution is compared to a classical rod model solution to verify the validity. The influences of the radii and Poisson ratio of pile on the transverse inertia effect of pile are analyzed. The parametric study shows that Poisson ratio and outer radius of pile have significant influence on the transverse inertia effect of large diameter pipe piles, while the inner radius has little effect.展开更多
The design and manufacture of spiral tap yet are in r esearch stage at present. This paper mainly introduces how to calculate its geom etric parameters and scientific selection of them with vector method. In additio n...The design and manufacture of spiral tap yet are in r esearch stage at present. This paper mainly introduces how to calculate its geom etric parameters and scientific selection of them with vector method. In additio n, an empiric formula of the tool life of spiral tap with large diameter is esta blished by method of correlation. The practice of design, manufacture and applying proves the advantage of spiral tap by the comparison between the spiral tap and common tap with same size. In the application of spiral tap has got better economic effect. The cutting fea ture and economic effect are obvious, that mean spiral tap greatly better than c ommon tap. The bright and wide prospect are going to come. No greatly increasing the ω can be effective to improve the cutting condition. Scientific selection of cutting speed V can increase the tool life of tapping and life of tapping too l.展开更多
In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-pre...In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.展开更多
The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whol...The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.展开更多
基金Projects(51109084/E09070151308234/E08061) supported by the National Natural Science Foundation of China+1 种基金Project(2013J05079) supported by the Natural Science Foundation of Fujian Province,ChinaProject(Z012002) supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences),China
文摘Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.
基金Project(U1134207)jointly supported by the National Natural Science Foundation and High Speed Railway Key Program of ChinaProject(NCET-12-0843)supported by the Program for New Century Excellent Talents in University of China+1 种基金Projects(51378177,51420105013)supported by the National Natural Science Foundation of ChinaProjects(2015B05014,2014B02814)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by three-dimensional elastodynamic theory and those in the pile are simulated by Rayleigh-Love rod theory. The vertical and radial displacements of the outer and inner soil are obtained by utilizing Laplace transform technique and differentiation on the governing equations of soils. Then, based on the continuous conditions between the pile and soils, the displacements of the pile are derived. The frequency domain velocity admittance and time domain velocity response of the pile top are also presented. The solution is compared to a classical rod model solution to verify the validity. The influences of the radii and Poisson ratio of pile on the transverse inertia effect of pile are analyzed. The parametric study shows that Poisson ratio and outer radius of pile have significant influence on the transverse inertia effect of large diameter pipe piles, while the inner radius has little effect.
文摘The design and manufacture of spiral tap yet are in r esearch stage at present. This paper mainly introduces how to calculate its geom etric parameters and scientific selection of them with vector method. In additio n, an empiric formula of the tool life of spiral tap with large diameter is esta blished by method of correlation. The practice of design, manufacture and applying proves the advantage of spiral tap by the comparison between the spiral tap and common tap with same size. In the application of spiral tap has got better economic effect. The cutting fea ture and economic effect are obvious, that mean spiral tap greatly better than c ommon tap. The bright and wide prospect are going to come. No greatly increasing the ω can be effective to improve the cutting condition. Scientific selection of cutting speed V can increase the tool life of tapping and life of tapping too l.
文摘In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.
文摘The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.