La/Mn co-doped Bi4Ti3O12 ceramics, Bi3.25La0.75Ti3-xMnxO12 (x = 0.02, 0.04, 0.06, 0.08), were prepared by the solid-state reaction method. The influence of manganese substitution for the titanium part in Bi3.25La0.7...La/Mn co-doped Bi4Ti3O12 ceramics, Bi3.25La0.75Ti3-xMnxO12 (x = 0.02, 0.04, 0.06, 0.08), were prepared by the solid-state reaction method. The influence of manganese substitution for the titanium part in Bi3.25La0.75Ti3O12 on the sintering behaviour, microstructure, Raman spectra and electrical properties was investigated. The experimental results show that the phase composition of all samples with and without manganese doping, sintered at 1000 ℃, consists of a single phase with a bismuth-layered structure belonging to the crystalline phase Bi4Ti3O12. There is no evidence of any impurity phase, but a small change in crystallographic orientation is observed. The Curie temperature of Bi3.25La0.75Ti3-xMnxO12 ceramics is steadily shifted to lower temperature with increasing Mn-doping content. Moreover, the remnant polarisation (Pr) of Bi3.25La0.75Ti3- xMnxO12 samples increases with Mn-doping content, and the Bi3.25La0.75Ti2.92Mn0.08O12 sample exhibits the largest Pr of 16.6 μC/cm^2.展开更多
We present an effective way in this paper to increase the density of lanthanum doped bismuth titanate ceramics, Bi4-xLaxTi3O12 (BLT), thereby significantly improving the performance of the BLT ceramics. Dense BLT ce...We present an effective way in this paper to increase the density of lanthanum doped bismuth titanate ceramics, Bi4-xLaxTi3O12 (BLT), thereby significantly improving the performance of the BLT ceramics. Dense BLT ceramicses, Bi4-xLaxTi3O12 (x = 0.25, 0.5, 0.75, 1.0), are prepared by using nanocrystalline powders fabricated by a -gel method and high-pressure technique. The microstructures of the BLT ceramicses prepared separately by conventional-pressure and high-pressure techniques are investigated by using x-ray diffraction and transmission electron microscope. The influence of La-doping on the densification of bismuth titanate ceramics is investigated. The experimental results indicate that the phase compositions of all samples with various lanthanum dopings sintered at 900℃ possess layer- structure of Bi4Ti3O12. The green compacts are pressed under 2.5 GPa, 3.0 GPa, 3.5 GPa and 4.0 GPa, separately. It is found that the density of BLT ceramics is significantly increased due to the decreasing of porosity in the green compacts by high-pressure process.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 50625204)National Natural Science Fund for Creative Research Groups (Grant No. 50621201)+2 种基金the Ministry of Science and Technology of China through National Basic Research Program of China (Grant No. 2009CB623301)through National High Technology ResearchDevelopment Program of China (Grant No. 2006AA03Z428)
文摘La/Mn co-doped Bi4Ti3O12 ceramics, Bi3.25La0.75Ti3-xMnxO12 (x = 0.02, 0.04, 0.06, 0.08), were prepared by the solid-state reaction method. The influence of manganese substitution for the titanium part in Bi3.25La0.75Ti3O12 on the sintering behaviour, microstructure, Raman spectra and electrical properties was investigated. The experimental results show that the phase composition of all samples with and without manganese doping, sintered at 1000 ℃, consists of a single phase with a bismuth-layered structure belonging to the crystalline phase Bi4Ti3O12. There is no evidence of any impurity phase, but a small change in crystallographic orientation is observed. The Curie temperature of Bi3.25La0.75Ti3-xMnxO12 ceramics is steadily shifted to lower temperature with increasing Mn-doping content. Moreover, the remnant polarisation (Pr) of Bi3.25La0.75Ti3- xMnxO12 samples increases with Mn-doping content, and the Bi3.25La0.75Ti2.92Mn0.08O12 sample exhibits the largest Pr of 16.6 μC/cm^2.
基金Project supported by the Science Development Project of Jilin Province of China (Grant No. 20090144)
文摘We present an effective way in this paper to increase the density of lanthanum doped bismuth titanate ceramics, Bi4-xLaxTi3O12 (BLT), thereby significantly improving the performance of the BLT ceramics. Dense BLT ceramicses, Bi4-xLaxTi3O12 (x = 0.25, 0.5, 0.75, 1.0), are prepared by using nanocrystalline powders fabricated by a -gel method and high-pressure technique. The microstructures of the BLT ceramicses prepared separately by conventional-pressure and high-pressure techniques are investigated by using x-ray diffraction and transmission electron microscope. The influence of La-doping on the densification of bismuth titanate ceramics is investigated. The experimental results indicate that the phase compositions of all samples with various lanthanum dopings sintered at 900℃ possess layer- structure of Bi4Ti3O12. The green compacts are pressed under 2.5 GPa, 3.0 GPa, 3.5 GPa and 4.0 GPa, separately. It is found that the density of BLT ceramics is significantly increased due to the decreasing of porosity in the green compacts by high-pressure process.