期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
基于L2范数最小化联合模型的目标跟踪算法 被引量:5
1
作者 王蒙 吴毅 +1 位作者 邓健康 刘青山 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第3期559-566,共8页
为了解决稀疏表示的跟踪算法的计算代价比较大,且目标的表观由于多种原因会发生变化的问题,提出了一种在贝叶斯推理框架下,建立结合基于全局模板的判别式模型和基于局部描述子的生成式模型的联合模型,通过L2范数最小化进行求解的目标跟... 为了解决稀疏表示的跟踪算法的计算代价比较大,且目标的表观由于多种原因会发生变化的问题,提出了一种在贝叶斯推理框架下,建立结合基于全局模板的判别式模型和基于局部描述子的生成式模型的联合模型,通过L2范数最小化进行求解的目标跟踪方法.在跟踪过程中,适时地更新判别式模型中的正负模板和生成式模型中模板的系数向量,使模板具有很强的适应性和判别性.实验结果表明,与其他典型的算法相比,该算法对于光照变化、尺度变化、遮挡、旋转等情况具有较强的鲁棒性. 展开更多
关键词 目标跟踪 l2范数最小 判别式模型 生成式模型 子空间
在线阅读 下载PDF
融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪 被引量:3
2
作者 吴正平 杨杰 +1 位作者 崔晓梦 张庆年 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2803-2810,共8页
在贝叶斯推理框架下,基于PCA子空间和L2范数最小化的目标跟踪算法能较好地处理视频场景中多种复杂的外观变化,但在目标出现旋转或姿态变化时易发生跟踪漂移现象。针对这一问题,该文提出一种融合L2范数最小化和压缩Haar-like特征匹配的... 在贝叶斯推理框架下,基于PCA子空间和L2范数最小化的目标跟踪算法能较好地处理视频场景中多种复杂的外观变化,但在目标出现旋转或姿态变化时易发生跟踪漂移现象。针对这一问题,该文提出一种融合L2范数最小化和压缩Haar-like特征匹配的快速视觉跟踪方法。该方法通过去除规模庞大的方块模板集和简化观测似然度函数降低计算的复杂度;而压缩Haar-like特征匹配技术则增强了算法对目标姿态变化及旋转的鲁棒性。实验结果表明:与目前流行的跟踪方法相比,该方法对严重遮挡、光照突变、快速运动、姿态变化和旋转等干扰均具有较强的鲁棒性,且在多个测试视频上可以达到29帧/s的速度,能满足快速视频跟踪要求。 展开更多
关键词 目标跟踪 PCA子空间 l2范数最小 压缩Haar-like特征 观测似然度
在线阅读 下载PDF
基于L1范数正则化和最小二乘优化的冲击载荷识别研究 被引量:5
3
作者 陈辉 缪炳荣 +3 位作者 赵浪涛 张盈 蒋钏应 周凤 《噪声与振动控制》 CSCD 北大核心 2023年第1期62-67,99,共7页
为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问... 为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问题,同时根据预条件共轭梯度法确定最优搜索路径和计算方向。最后,考虑不同冲击工况、不同响应位置对识别结果的影响。通过对铝合金板进行冲击载荷识别试验进行验证,发现在铝板受单次冲击和多次冲击工况下所识别载荷与施加的实际载荷吻合良好。结果还表明,与Tikhonov正则化方法相比,该方法能够提高冲击载荷识别的准确性和稳定性。 展开更多
关键词 振动与波 冲击载荷识别 l1范数正则 最小二乘优 TIKHONOV正则 正则参数
在线阅读 下载PDF
基于l_1范数最小化的水下圆柱壳振动声辐射预报 被引量:1
4
作者 叶珍霞 杜堃 +2 位作者 邱昌林 陈乐佳 谢坤 《中国舰船研究》 CSCD 北大核心 2015年第3期70-76,83,共8页
基于模态叠加理论,将圆柱壳结构在流体中的响应以真空中振动模态形式展开,通过测点振动速度和模态矩阵建立以模态参与系数为未知量的欠定方程组。利用结构中低频段振动对应的模态参与系数的稀疏特性,采用l1范数最小化法求解基于测点振... 基于模态叠加理论,将圆柱壳结构在流体中的响应以真空中振动模态形式展开,通过测点振动速度和模态矩阵建立以模态参与系数为未知量的欠定方程组。利用结构中低频段振动对应的模态参与系数的稀疏特性,采用l1范数最小化法求解基于测点振动所建立的欠定方程组,得到模态参与系数,从而重构结构振动速度场,最终采用边界元法进行声辐射预报。通过单层圆柱壳振动与声辐射实验结果和预报结果进行对比,验证了该预报方法的正确性。在此基础上,研究基于布置在内壳上的测点振动速度重构双层圆柱壳体结构振动和实现辐射噪声评估的可行性,并初步研究了测点数目和位置对预报精度的影响。 展开更多
关键词 模态叠加法 l1范数最小 振动重构 声辐射预报 圆柱壳
在线阅读 下载PDF
基于L1范数正则化的三维多震源最小二乘逆时偏移 被引量:9
5
作者 李庆洋 黄建平 +1 位作者 李振春 李娜 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期52-59,共8页
与常规偏移相比,最小二乘偏移在振幅保真性、提高分辨率、压制偏移噪音等方面具有较大优势。交错网格下基于一阶波动方程的最小二乘逆时偏移能够考虑介质密度的影响,且在压制数值频散方面有一定的优势,但该方法目前主要应用于二维介质... 与常规偏移相比,最小二乘偏移在振幅保真性、提高分辨率、压制偏移噪音等方面具有较大优势。交错网格下基于一阶波动方程的最小二乘逆时偏移能够考虑介质密度的影响,且在压制数值频散方面有一定的优势,但该方法目前主要应用于二维介质中。为了拓展方法的适用范围,将该算法推广到三维情形下。同时,考虑到多震源方法会引入串扰噪声,在目标泛函中引入L1范数的稀疏正则化约束,并给出一种快速有效的解法。结果表明,相位编码算法可显著降低计算量,提高计算效率,但会引入高频的串扰噪音,而L1范数正则化由于加入稀疏约束,可有效地压制成像结果中的低频和高频噪音,显著提升成像分辨率,较大程度地改善成像质量,且线性Bergman解法降低反演结果对参数的依赖度,适用于实际资料的处理。 展开更多
关键词 最小二乘逆时偏移 l1范数正则 三维多震源 一阶速度-应力方程
在线阅读 下载PDF
基于L_(1/2)范数正则化的塑性回声状态网络故障诊断模型 被引量:1
6
作者 逯程 徐廷学 王虹 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第3期535-541,共7页
为了提升储备池的动态适应性能,克服回声状态网络(ESN)输出权值求解的病态不适定问题,平衡其拟合与泛化能力,提出了一种基于L_(1/2)范数正则化的塑性回声状态网络故障诊断模型。在储备池构建中引入BCM规则对连接权矩阵进行预训练,并在... 为了提升储备池的动态适应性能,克服回声状态网络(ESN)输出权值求解的病态不适定问题,平衡其拟合与泛化能力,提出了一种基于L_(1/2)范数正则化的塑性回声状态网络故障诊断模型。在储备池构建中引入BCM规则对连接权矩阵进行预训练,并在目标函数中添加L_(1/2)范数惩罚项以提高稀疏化效率,利用一个光滑化的L_(1/2)正则子克服迭代数值振荡问题,并采用半阈值迭代法对模型进行求解。将模型应用于机载电台的故障诊断问题中,仿真结果证明了模型的有效性和优越性。 展开更多
关键词 储备池 回声状态网络(ESN) BCM规则 l1/2范数正则 半阈值迭代法 故障诊断
在线阅读 下载PDF
基于L_1/L_2范数的表面多次波自适应相减方法 被引量:9
7
作者 井洪亮 石颖 +1 位作者 李莹 宋元东 《石油地球物理勘探》 EI CSCD 北大核心 2015年第4期619-625,2,共7页
依据L1和L2范数自适应相减方法的特性,提出了联合L1/L2范数的表面多次波自适应相减方法,并引入GPU并行加速,在充分发挥两种方法优势的同时,有效缓解了两种自适应相减方法限制性条件引发的问题,在较短的时间内获得收敛的维纳滤波器,并且... 依据L1和L2范数自适应相减方法的特性,提出了联合L1/L2范数的表面多次波自适应相减方法,并引入GPU并行加速,在充分发挥两种方法优势的同时,有效缓解了两种自适应相减方法限制性条件引发的问题,在较短的时间内获得收敛的维纳滤波器,并且较好地拟合多次波模型和原始记录中的多次波。文中方法无需L2范数方法的假设条件,相比于L1范数方法提高了计算效率。理论模型和实际海洋地震数据测试表明,基于L1/L2范数的GPU并行加速的表面多次波自适应相减方法可有效压制地震数据中的表面多次波。 展开更多
关键词 SRME 自适应相减 l1范数 l2范数 GPU
在线阅读 下载PDF
自适应加权混合L1/L2范数匹配相减多次波压制方法 被引量:4
8
作者 陈习峰 薛永安 黄新武 《石油物探》 EI CSCD 北大核心 2019年第4期524-532,共9页
基于波动方程的自由表面多次波和层间多次波压制时,自适应匹配相减方法的选取是关键的环节。L2范数自适应匹配相减方法适用于多次波强而有效波弱的情况,L1范数自适应匹配相减方法则适用于多次波弱而有效波强的情况,L2范数自适应匹配相... 基于波动方程的自由表面多次波和层间多次波压制时,自适应匹配相减方法的选取是关键的环节。L2范数自适应匹配相减方法适用于多次波强而有效波弱的情况,L1范数自适应匹配相减方法则适用于多次波弱而有效波强的情况,L2范数自适应匹配相减方法的运算速度明显较L1范数自适应匹配相减方法更快。自适应加权混合L1/L2范数匹配相减方法需要构建联合L1范数和L2范数的目标函数,再根据地震数据中有效波与多次波的能量比自适应地调整目标函数中L1范数和L2范数所占权值。该方法充分利用了L1范数和L2范数压制多次波时对地震数据不同的要求,既不需要L2范数自适应匹配相减方法的有效信号与噪声正交的假设,又克服了L1范数自适应匹配相减方法运算效率较低的缺点,在保证压制效果的同时提高了计算效率。多层水平层状模型及SEG/EAGE Pluto模型的测试结果表明,相较于常规方法,该方法明显提升了多次波的压制效果。 展开更多
关键词 波动方程 自由表面相关多次波 层间多次波 自适应匹配相减 混合l1/l2范数 Pluto模型
在线阅读 下载PDF
具有容错能力的L_1最优化半自动2D转3D 被引量:2
9
作者 袁红星 安鹏 +1 位作者 吴少群 郑悠 《电子学报》 EI CAS CSCD 北大核心 2018年第2期447-455,共9页
半自动2D转3D的关键是将用户分配的稀疏深度转换为稠密深度.现有方法没有充分考虑纹理图像和深度图之间的结构差异,以及2D转3D对用户误标注的容错性.针对上述问题,借助L1范数对异常数据的抵制,在一个统一框架下实现结构相关具有容错能... 半自动2D转3D的关键是将用户分配的稀疏深度转换为稠密深度.现有方法没有充分考虑纹理图像和深度图之间的结构差异,以及2D转3D对用户误标注的容错性.针对上述问题,借助L1范数对异常数据的抵制,在一个统一框架下实现结构相关具有容错能力的稀疏深度稠密插值.首先,利用L1范数表示估计深度和用户分配深度在标注位置的差异,建立数据项;其次,根据特征的相似性用L1范数计算局部相邻像素点之间的深度差异,建立局部正则项;再次,对图像进行超像素分割,根据不同超像素内代表性像素点之间深度差异的L1测度,建立全局正则项;最后,用上述数据项和正则项构建能量函数,并通过分裂Bregman算法予以求解.无误差和有误差情况下的实验结果表明,与边缘保持的最优化插值、随机游走、混合图割与随机游走、软分割约束的最优化插值和非局部化随机游走相比,本文估计深度图绘制的虚拟视点图像空洞和伪影损伤更小.在误操作情况下,本文比上述方法 PSNR改善了0.9d B以上,且在视觉上屏蔽了用户误操作的影响. 展开更多
关键词 2D转3D 最优 随机游走 图割 l1范数
在线阅读 下载PDF
L_2范数正则化鲁棒编码视觉跟踪 被引量:4
10
作者 袁广林 薛模根 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1838-1843,共6页
针对基于稀疏表示的视觉跟踪计算效率低和易于产生"模型漂移"的不足,该文提出一种基于L2范数正则化鲁棒编码的视觉跟踪方法。该方法利用L2范数正则化鲁棒编码求解候选目标的编码系数,以粒子滤波为框架,利用候选目标的加权重... 针对基于稀疏表示的视觉跟踪计算效率低和易于产生"模型漂移"的不足,该文提出一种基于L2范数正则化鲁棒编码的视觉跟踪方法。该方法利用L2范数正则化鲁棒编码求解候选目标的编码系数,以粒子滤波为框架,利用候选目标的加权重建误差建立似然模型跟踪目标。为了适应目标的变化并克服"模型漂移"问题,利用L2范数正则化鲁棒编码估计当前目标的加权矩阵用于遮挡检测,根据遮挡检测结果实现模型更新。对提出的跟踪方法进行实验的结果表明:与现有跟踪方法相比,该方法具有较优的跟踪性能。 展开更多
关键词 视觉跟踪 l2范数正则 鲁棒编码 遮挡检测
在线阅读 下载PDF
最小L_1范数实现周期非均匀采样与重构研究 被引量:1
11
作者 罗浚溢 田书林 +1 位作者 王志刚 刘涛 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第3期418-423,共6页
根据周期非均匀采样需要多个采样通道的特点,利用联合子空间理论将采样与重构转换为矩阵向量运算。结合最小L1范数算法,提出了一种针对稀疏信号的周期非均匀采样与重构方法,分析了最小L1范数算法在周期非均匀采样系统中的完整重构条件... 根据周期非均匀采样需要多个采样通道的特点,利用联合子空间理论将采样与重构转换为矩阵向量运算。结合最小L1范数算法,提出了一种针对稀疏信号的周期非均匀采样与重构方法,分析了最小L1范数算法在周期非均匀采样系统中的完整重构条件。最后,以多带正弦信号为例,分别从可完整重构概率和系统整体验证两个方面证明了该方法能够实现稀疏信号的采样与重构。 展开更多
关键词 最小l1范数 周期非均匀采样 稀疏信号 联合子空间
在线阅读 下载PDF
基于多字典L1/2正则化的超分辨率重建算法 被引量:3
12
作者 徐志刚 李文文 《吉林大学学报(信息科学版)》 CAS 2017年第3期354-362,共9页
为详细表达图像高频细节信息,提高重建图像质量,提出了一种基于多字典L1/2正则化的超分辨率重建算法。该算法在稀疏重建字典对训练阶段,为有效提取低分辨率图像边缘、纹理等特征细节信息,采用改进的一阶二阶导数方法对低分辨率图像进行... 为详细表达图像高频细节信息,提高重建图像质量,提出了一种基于多字典L1/2正则化的超分辨率重建算法。该算法在稀疏重建字典对训练阶段,为有效提取低分辨率图像边缘、纹理等特征细节信息,采用改进的一阶二阶导数方法对低分辨率图像进行特征提取;而在图像重建阶段,为解决基于L1正则模型得到的解时常不够稀疏,重建图像质量有待进一步提高的问题,采用L1/2范数代替L1范数构建超分辨率重建模型。实验表明,与现有算法相比较,该算法可更好地表达图像细节部分信息,并能提高图像的重建质量。 展开更多
关键词 超分辨率重建 特征提取 l1/2正则
在线阅读 下载PDF
基于加权L1范数最小化算法的地震数据重建方法研究 被引量:1
13
作者 梁爽 武召祺 彭清 《科学技术创新》 2022年第26期38-41,共4页
在地震勘探过程中,往往会因为某些不可抗拒的因素而造成地震数据不规则缺失,这将严重影响后续工作的处理,因此需要对缺失的地震数据进行重建。依据地震数据有效波具有连续性的特点,可采用加权L1范数最小化算法对缺失数据进行重建。实验... 在地震勘探过程中,往往会因为某些不可抗拒的因素而造成地震数据不规则缺失,这将严重影响后续工作的处理,因此需要对缺失的地震数据进行重建。依据地震数据有效波具有连续性的特点,可采用加权L1范数最小化算法对缺失数据进行重建。实验结果表明:加权L1范数最小化算法具有重建精度高,抗噪声能力强的特点,对于工业生产极具应用价值。 展开更多
关键词 地震数据重建 加权l1范数最小算法 标准l1范数最小算法
在线阅读 下载PDF
一种适用频谱检测技术的最小l_1范数改进算法
14
作者 王臣昊 肖小潮 《南京邮电大学学报(自然科学版)》 北大核心 2012年第3期5-9,15,共6页
压缩感知(compressed sensing)理论是近两年信号处理领域方兴未艾的一个热门研究方向,它的出现突破了奈奎斯特采样定理对信号频率的限制。最小l1范数法(即BP算法)是压缩感知中信号若干种重构方法中比较成熟的一种算法。文中在对已有的B... 压缩感知(compressed sensing)理论是近两年信号处理领域方兴未艾的一个热门研究方向,它的出现突破了奈奎斯特采样定理对信号频率的限制。最小l1范数法(即BP算法)是压缩感知中信号若干种重构方法中比较成熟的一种算法。文中在对已有的BP算法进行了研究后,提出了一种适用于噪声环境下的加权迭代l1算法,并将之应用于认知无线电的频谱感知中,经过MATLAB仿真的对比后,验证了改进之后的算法对提高含有高斯白噪声的信号重构的精确度有着更加精确的效果。 展开更多
关键词 压缩感知 最小l1范数 信号重构 认知无线电 频谱感知
在线阅读 下载PDF
基于l_1-l_2范数的块稀疏信号重构 被引量:5
15
作者 陈鹏清 黄尉 《应用数学和力学》 CSCD 北大核心 2017年第8期932-942,共11页
压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元... 压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l_1-2范数最小化方法的启发,将基于l_1-l_2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l_1-l_2范数的相关性质,建立了基于l_1-l_2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l_1-l_2范数的迭代方法.数值实验表明,基于l_1-l_2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率. 展开更多
关键词 块稀疏 l1-l2范数 压缩感知 重构算法
在线阅读 下载PDF
基于L_(1)范数正则化约束的叠前数据衰减补偿方法 被引量:1
16
作者 程万里 王守东 +2 位作者 孟巾钰 王梓旭 张俊杰 《石油地球物理勘探》 EI CSCD 北大核心 2023年第3期567-579,共13页
由于地下介质的吸收作用,地震波在传播过程中经历了能量衰减、波形畸变及频带变窄的过程,严重降低了地震资料的分辨率。对于叠前地震数据而言,地层吸收衰减效应会随着传播路径发生变化,进而扭曲地震数据的AVA反射曲线特征。为此,提出一... 由于地下介质的吸收作用,地震波在传播过程中经历了能量衰减、波形畸变及频带变窄的过程,严重降低了地震资料的分辨率。对于叠前地震数据而言,地层吸收衰减效应会随着传播路径发生变化,进而扭曲地震数据的AVA反射曲线特征。为此,提出一种针对叠前数据的衰减补偿方法。该方法考虑了射线路径对于衰减补偿的影响,首先在水平层状介质假设下推导出衰减介质中的叠前道集正演公式;然后将衰减补偿简化为一个反问题,并通过L_(1)范数进行正则化约束;最后采用交替方向乘子算法(ADMM)求取最优解,进而实现叠前数据的衰减补偿。数值测试结果表明,所提方法不仅能对振幅和相位进行补偿,而且还能恢复叠前道集的AVA反射特征。通过与叠后补偿、常规叠前反Q滤波方法对比分析,所提方法的精度更高、稳定性及抗噪能力更强。同时,Q值敏感度分析实验说明所提方法对Q值模型不敏感,仅借助低频Q值模型也能保持较高的补偿精度。实际资料处理结果也表明,该方法能够提高叠前道集的分辨率,有效还原数据的AVA反射特征,为高精度叠前地震反演奠定了基础。 展开更多
关键词 衰减补偿 叠前数据 AVA分析 l1范数正则 反演 分辨率
在线阅读 下载PDF
基于模糊L1/2正则化的无线传感网络拥塞控制研究 被引量:2
17
作者 金鑫 杨阳 +2 位作者 李振兴 刘智 程果 《长春理工大学学报(自然科学版)》 2019年第4期66-70,共5页
无线传感网络在传输数据过程中,越靠近中心节点越容易产生拥塞,针对无线传感网络的拥塞问题,提出一种L1/2正则化和模糊神经网络相结合的拥塞控制算法。该算法在发送端对采集数据进行压缩观测,融合数据,达到初步缓解拥塞的效果。由于网... 无线传感网络在传输数据过程中,越靠近中心节点越容易产生拥塞,针对无线传感网络的拥塞问题,提出一种L1/2正则化和模糊神经网络相结合的拥塞控制算法。该算法在发送端对采集数据进行压缩观测,融合数据,达到初步缓解拥塞的效果。由于网路的传输数据量与压缩观测矩阵维数成正比关系,网络的拥塞程度很难用精确地数学模型描述,所以采用模糊神经网络对压缩感知观测矩阵维数进行自动的调整,增强算法对网络不同程度拥塞的适应性。在接收端采用L1/2正则化方法对无线传感网络压缩后的传输数据进行重构,重构精度高,数据损失小,实现对网络拥塞的全局控制。最后,对该算法进行MATLAB仿真实验,实验结果显示,该算法能够缓解无线传感网络的拥塞问题且效果明显,在不同的拥塞状况下,网络的吞吐量增大25%~50%,丢包率降低20%~55%,时延减少6s。 展开更多
关键词 无线传感网络 模糊神经网络控制 l1/2正则 拥塞控制
在线阅读 下载PDF
基于加权l_1最小化的低复杂度波达方向估计算法 被引量:1
18
作者 段素馨 张颢 +1 位作者 孙秀志 郑春弟 《电波科学学报》 EI CSCD 北大核心 2015年第4期640-646,共7页
基于阵列协方差矩阵的稀疏表征和阵列响应矩阵的Khatri-Rao积,提出了一种低运算复杂度的波达方向估计算法.所提算法在减少未知数个数的同时,通过线性变换降低约束方程的维数,可有效减少优化问题的计算复杂度.为充分利用阵列协方差矩阵... 基于阵列协方差矩阵的稀疏表征和阵列响应矩阵的Khatri-Rao积,提出了一种低运算复杂度的波达方向估计算法.所提算法在减少未知数个数的同时,通过线性变换降低约束方程的维数,可有效减少优化问题的计算复杂度.为充分利用阵列协方差矩阵中蕴涵的信息,使用Capon谱的倒数作为权值构建出了加权l1最小化问题,这使得所提算法在降低运算量的同时能够获得较好的估计性能.仿真实验验证了所提算法的有效性. 展开更多
关键词 波达方向估计 加权l1最小 稀疏恢复 等距线阵
在线阅读 下载PDF
基于L1/2正则化理论的地震稀疏反褶积 被引量:8
19
作者 康治梁 张雪冰 《石油物探》 EI CSCD 北大核心 2019年第6期855-863,共9页
地震反褶积是一种重要的压缩地震子波、提高薄层纵向分辨率的地震数据处理方法。在层状地层的假设下,反射系数可视作稀疏的脉冲序列,所以地震反褶积可以描述为一个稀疏求解问题,L 1正则化被广泛用于解决稀疏问题,但近年来一些文献证明L ... 地震反褶积是一种重要的压缩地震子波、提高薄层纵向分辨率的地震数据处理方法。在层状地层的假设下,反射系数可视作稀疏的脉冲序列,所以地震反褶积可以描述为一个稀疏求解问题,L 1正则化被广泛用于解决稀疏问题,但近年来一些文献证明L 1正则化的稀疏表达能力不是最优的。针对这一问题,基于快速发展的L 1/2正则化理论,提出将L 1/2正则化作为反射系数的稀疏约束进行地震反褶积处理,并使用其特定的阈值迭代算法进行求解,对单道模型的测试证实了该方法对正则化参数和噪声有较好的适应能力。简单二维模型和Marmousi2模型数据的测试结果表明,基于该方法的反演结果能较好地拟合反射系数振幅,并且对噪声干扰的鲁棒性更强,能够更好地保护弱反射系数。实际数据应用结果表明,该方法能有效消除子波影响,较好地分辨出薄层结构和透镜体结构,为地震数据高分辨处理提供了有力工具。 展开更多
关键词 地震反演 稀疏性 l 1正则 l 1/2正则理论 非凸正则 高分辨率 薄层识别
在线阅读 下载PDF
基于L1最小范数法的波束形成方法参数研究
20
作者 毛锦 孙健 +1 位作者 刘凯 刘江 《噪声与振动控制》 CSCD 北大核心 2022年第1期95-99,共5页
L1最小范数法的波束形成方法具有运行速度快、识别准确度高、分辨率好等优点,广泛应用于声源识别领域,然而因该方法参数选取较为困难,在使用中需要花费大量时间来试值。针对此问题,建立声源测量模型,研究不同条件下约束参数的取值。基... L1最小范数法的波束形成方法具有运行速度快、识别准确度高、分辨率好等优点,广泛应用于声源识别领域,然而因该方法参数选取较为困难,在使用中需要花费大量时间来试值。针对此问题,建立声源测量模型,研究不同条件下约束参数的取值。基于详细的理论推导与数值模拟仿真,分析约束参数[ε]与声源距离,信噪比和阵列孔径之间的关系。数值模拟结果表明:信噪比为10 dB到40 dB之间,测量距离大于0.5 m,测量阵列采用49个阵列单元时,可以实现声源的精确定位,并且约束参数的变化范围很小,在不同的频率下呈现一定的规律性。发现这种变化规律为参数选择提供了可靠的理论基础,可大大缩短取值的时间,具有很高的可行性。 展开更多
关键词 振动与波 波束形成 压缩感知 l1最小范数 声源识别
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部