期刊文献+
共找到1,413篇文章
< 1 2 71 >
每页显示 20 50 100
Forestry big data platform by Knowledge Graph 被引量:4
1
作者 Mengxi Zhao Dan Li Yongshen Long 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第3期1305-1314,共10页
Using the advantages of web crawlers in data collection and distributed storage technologies,we accessed to a wealth of forestry-related data.Combined with the mature big data technology at its present stage,Hadoop... Using the advantages of web crawlers in data collection and distributed storage technologies,we accessed to a wealth of forestry-related data.Combined with the mature big data technology at its present stage,Hadoop's distributed system was selected to solve the storage problem of massive forestry big data and the memory-based Spark computing framework to realize real-time and fast processing of data.The forestry data contains a wealth of information,and mining this information is of great significance for guiding the development of forestry.We conducts co-word and cluster analyses on the keywords of forestry data,extracts the rules hidden in the data,analyzes the research hotspots more accurately,grasps the evolution trend of subject topics,and plays an important role in promoting the research and development of subject areas.The co-word analysis and clustering algorithm have important practical significance for the topic structure,research hotspot or development trend in the field of forestry research.Distributed storage framework and parallel computing have greatly improved the performance of data mining algorithms.Therefore,the forestry big data mining system by big data technology has important practical significance for promoting the development of intelligent forestry. 展开更多
关键词 Intelligent forestry Co-word analysis knowledge graph Big data
在线阅读 下载PDF
Learning Context-based Embeddings for Knowledge Graph Completion 被引量:5
2
作者 Fei Pu Zhongwei Zhang +1 位作者 Yan Feng Bailin Yang 《Journal of Data and Information Science》 CSCD 2022年第2期84-106,共23页
Purpose:Due to the incompleteness nature of knowledge graphs(KGs),the task of predicting missing links between entities becomes important.Many previous approaches are static,this posed a notable problem that all meani... Purpose:Due to the incompleteness nature of knowledge graphs(KGs),the task of predicting missing links between entities becomes important.Many previous approaches are static,this posed a notable problem that all meanings of a polysemous entity share one embedding vector.This study aims to propose a polysemous embedding approach,named KG embedding under relational contexts(ContE for short),for missing link prediction.Design/methodology/approach:ContE models and infers different relationship patterns by considering the context of the relationship,which is implicit in the local neighborhood of the relationship.The forward and backward impacts of the relationship in ContE are mapped to two different embedding vectors,which represent the contextual information of the relationship.Then,according to the position of the entity,the entity’s polysemous representation is obtained by adding its static embedding vector to the corresponding context vector of the relationship.Findings:ContE is a fully expressive,that is,given any ground truth over the triples,there are embedding assignments to entities and relations that can precisely separate the true triples from false ones.ContE is capable of modeling four connectivity patterns such as symmetry,antisymmetry,inversion and composition.Research limitations:ContE needs to do a grid search to find best parameters to get best performance in practice,which is a time-consuming task.Sometimes,it requires longer entity vectors to get better performance than some other models.Practical implications:ContE is a bilinear model,which is a quite simple model that could be applied to large-scale KGs.By considering contexts of relations,ContE can distinguish the exact meaning of an entity in different triples so that when performing compositional reasoning,it is capable to infer the connectivity patterns of relations and achieves good performance on link prediction tasks.Originality/value:ContE considers the contexts of entities in terms of their positions in triples and the relationships they link to.It decomposes a relation vector into two vectors,namely,forward impact vector and backward impact vector in order to capture the relational contexts.ContE has the same low computational complexity as TransE.Therefore,it provides a new approach for contextualized knowledge graph embedding. 展开更多
关键词 Full expressiveness Relational contexts knowledge graph embedding Relation patterns Link prediction
在线阅读 下载PDF
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:4
3
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM knowledge graph Fault diagnosis Bayesian inference RBT3-TextCNN Web interface
在线阅读 下载PDF
Sentence,Phrase,and Triple Annotations to Build a Knowledge Graph of Natural Language Processing Contributions—A Trial Dataset 被引量:1
4
作者 Jennifer D’Souza Sören Auer 《Journal of Data and Information Science》 CSCD 2021年第3期6-34,共29页
Purpose:This work aims to normalize the NLPCONTRIBUTIONS scheme(henceforward,NLPCONTRIBUTIONGRAPH)to structure,directly from article sentences,the contributions information in Natural Language Processing(NLP)scholarly... Purpose:This work aims to normalize the NLPCONTRIBUTIONS scheme(henceforward,NLPCONTRIBUTIONGRAPH)to structure,directly from article sentences,the contributions information in Natural Language Processing(NLP)scholarly articles via a two-stage annotation methodology:1)pilot stage-to define the scheme(described in prior work);and 2)adjudication stage-to normalize the graphing model(the focus of this paper).Design/methodology/approach:We re-annotate,a second time,the contributions-pertinent information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline comprising:contribution-centered sentences,phrases,and triple statements.To this end,specifically,care was taken in the adjudication annotation stage to reduce annotation noise while formulating the guidelines for our proposed novel NLP contributions structuring and graphing scheme.Findings:The application of NLPCONTRIBUTIONGRAPH on the 50 articles resulted finally in a dataset of 900 contribution-focused sentences,4,702 contribution-information-centered phrases,and 2,980 surface-structured triples.The intra-annotation agreement between the first and second stages,in terms of F1-score,was 67.92%for sentences,41.82%for phrases,and 22.31%for triple statements indicating that with increased granularity of the information,the annotation decision variance is greater.Research limitations:NLPCONTRIBUTIONGRAPH has limited scope for structuring scholarly contributions compared with STEM(Science,Technology,Engineering,and Medicine)scholarly knowledge at large.Further,the annotation scheme in this work is designed by only an intra-annotator consensus-a single annotator first annotated the data to propose the initial scheme,following which,the same annotator reannotated the data to normalize the annotations in an adjudication stage.However,the expected goal of this work is to achieve a standardized retrospective model of capturing NLP contributions from scholarly articles.This would entail a larger initiative of enlisting multiple annotators to accommodate different worldviews into a“single”set of structures and relationships as the final scheme.Given that the initial scheme is first proposed and the complexity of the annotation task in the realistic timeframe,our intraannotation procedure is well-suited.Nevertheless,the model proposed in this work is presently limited since it does not incorporate multiple annotator worldviews.This is planned as future work to produce a robust model.Practical implications:We demonstrate NLPCONTRIBUTIONGRAPH data integrated into the Open Research Knowledge Graph(ORKG),a next-generation KG-based digital library with intelligent computations enabled over structured scholarly knowledge,as a viable aid to assist researchers in their day-to-day tasks.Originality/value:NLPCONTRIBUTIONGRAPH is a novel scheme to annotate research contributions from NLP articles and integrate them in a knowledge graph,which to the best of our knowledge does not exist in the community.Furthermore,our quantitative evaluations over the two-stage annotation tasks offer insights into task difficulty. 展开更多
关键词 Scholarly knowledge graphs Open science graphs knowledge representation Natural language processing Semantic publishing
在线阅读 下载PDF
Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation 被引量:1
5
作者 LIU Guoqiang GONG Renbin +4 位作者 SHI Yujiang WANG Zhenzhen MI Lan YUAN Chao ZHONG Jibin 《Petroleum Exploration and Development》 CSCD 2022年第3期572-585,共14页
Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting charac... Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields. 展开更多
关键词 well logging hydrocarbon bearing formation identification knowledge graph graph embedding technique intelligent identification neural network
在线阅读 下载PDF
Construction and application of knowledge graph for grid dispatch fault handling based on pre-trained model 被引量:1
6
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Jie Zhang Di Wu 《Global Energy Interconnection》 EI CSCD 2023年第4期493-504,共12页
With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power... With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid. 展开更多
关键词 Power-grid dispatch fault handling knowledge graph Pre-trained model Auxiliary decision-making
在线阅读 下载PDF
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
7
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 Feature information enhancement graph neural network Natural language processing Sparse knowledge graph(kg)inference
在线阅读 下载PDF
Aquatic Medicine Knowledge Graph Completion Based on Hybrid Convolution
8
作者 Huining Yang Qishu Song +3 位作者 Liming Shao Guangyu Li Zhetao Sun Hong Yu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期298-312,共15页
Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic ... Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic discrimination among similar entities and inconspicuous semantic features result in low accuracy when completing aquatic medicine knowledge graph with complex relationships.In this study,an aquatic medicine knowledge graph completion method(TransH+HConvAM)is proposed.Firstly,TransH is applied to split the vector plane between entities and relations,ameliorating the poor completion effect caused by low semantic resolution of entities.Then,hybrid convolution is introduced to obtain the global interaction of triples based on the complete interaction between head/tail entities and relations,which improves the semantic features of triples and enhances the completion effect of complex relationships in the graph.Experiments are conducted to verify the performance of the proposed method.The MR,MRR and Hit@10 of the TransH+HConvAM are found to be 674,0.339,and 0.361,respectively.This study shows that the model effectively overcomes the poor completion effect of complex relationships and improves the construction quality of the aquatic medicine knowledge graph,providing technical support for intelligent aquaculture. 展开更多
关键词 aquatic medicine knowledge graph graph completion hybrid convolution global features
在线阅读 下载PDF
Modeling of unsupervised knowledge graph of events based on mutual information among neighbor domains and sparse representation
9
作者 Jing-Tao Sun Jing-Ming Li Qiu-Yu Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第12期2150-2159,共10页
Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor do... Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery. 展开更多
关键词 Text event mining knowledge graph of events Mutual information among neighbor domains Sparse representation
在线阅读 下载PDF
基于动态知识图谱的中医疫病古籍知识演化研究
10
作者 沈旺 于琳 +2 位作者 冯欣 陈晓美 温雯婷 《现代情报》 北大核心 2025年第2期26-37,共12页
[目的/意义]通过构建动态知识图谱实现中医疫病古籍知识动态组织与可视化,并依此挖掘中医疫病古籍隐性知识。[方法/过程]构建融合动态元素的中医疫病古籍知识元语义描述模型,以温病学派为例,基于知识元语义描述模型和深度学习技术进行... [目的/意义]通过构建动态知识图谱实现中医疫病古籍知识动态组织与可视化,并依此挖掘中医疫病古籍隐性知识。[方法/过程]构建融合动态元素的中医疫病古籍知识元语义描述模型,以温病学派为例,基于知识元语义描述模型和深度学习技术进行知识抽取并构建动态知识图谱,结合知识计算方法对温病学派疫病古籍知识进行组方用药规律演化分析以及辩证发展规律探析。[结果/结论]结果表明,随着时间推移,温病学派逐渐偏向使用甘苦寒类中药,各时期疫病症状描述较为一致,辩证理论日益扩充,研究揭示了中医疫病古籍知识演化发展规律并为中医古籍知识发现等相关研究提供新思路。 展开更多
关键词 数字人文 动态知识图谱 知识演化 知识元 中医古籍
在线阅读 下载PDF
基于混合因果逻辑的尾矿坝事故知识图谱构建与应用
11
作者 郭梨 高元 +1 位作者 吴昊 杨震 《金属矿山》 北大核心 2025年第1期233-242,共10页
针对尾矿坝事故风险分析的复杂性和不确定性,提出了一种基于混合因果逻辑的尾矿坝事故知识图谱构建与应用方法。该方法首先设计了尾矿坝事故风险分析的混合因果逻辑模型框架,针对尾矿坝自身风险,识别确定性因果逻辑关系;针对人为组织失... 针对尾矿坝事故风险分析的复杂性和不确定性,提出了一种基于混合因果逻辑的尾矿坝事故知识图谱构建与应用方法。该方法首先设计了尾矿坝事故风险分析的混合因果逻辑模型框架,针对尾矿坝自身风险,识别确定性因果逻辑关系;针对人为组织失误,识别非确定性的因果关系。在此模型中,事件序列图位于最顶层,用于风险逻辑演化和计算事故发生概率;中间层为故障树,探究关键事件发生的原因;贝叶斯网络位于最底层,分析具有变化性且相互关联的事件或因子的影响,评估人为和组织失效的概率。然后根据所得到的节点及其之间的逻辑关系,采用Python+Neo4j方法转化为基于混合因果逻辑的尾矿坝事故知识图谱。以降雨引发的尾矿坝事故为例,分析了尾矿坝事故的主要原因和影响因素,以及它们之间的因果关系,利用混合因果逻辑模型对尾矿坝事故风险进行了定量和定性的推理和分析,并构建了相应的知识图谱。研究结果表明:该方法能够综合考虑尾矿坝事故风险的复杂性和不确定性,从多个角度以图形化方式描述事故的演化机理,为尾矿坝风险管理提供了一种有效工具。 展开更多
关键词 混合因果逻辑 知识图谱 尾矿坝事故 风险评估
在线阅读 下载PDF
知识图谱赋能交通运输专业特色课程研究——创新路径与实践探索
12
作者 王海星 杨洋 +2 位作者 夏胜利 王力 李鹏辉 《交通工程》 2025年第3期106-112,共7页
随着现代信息技术的迅猛发展,知识图谱于教育领域的应用发展迅速。论文运用数据采集及预处理、知识抽取、知识融合等知识图谱技术方法,探究知识图谱在交通运输专业特色课程中的应用成效与优化路径。基于知识图谱进行资源汇集、知识点的... 随着现代信息技术的迅猛发展,知识图谱于教育领域的应用发展迅速。论文运用数据采集及预处理、知识抽取、知识融合等知识图谱技术方法,探究知识图谱在交通运输专业特色课程中的应用成效与优化路径。基于知识图谱进行资源汇集、知识点的提取与整合、可视化呈现,重塑交通运输专业的课程知识体系,将复杂的知识点转化为直观的可视化网络。同时,运用知识图谱开展教学内容优化、教学方法创新、学生学习画像的构建及智能推荐、基于知识图谱的课程考核改革等。知识图谱技术与交通运输专业特色课程紧密结合,为学生提供清晰的学习路径,助力构建系统的知识框架,解决传统教学中碎片化的困境,提升知识内化效率,突显知识图谱在培养人才实践能力方面的优势,为课程改革提供了有力支撑。 展开更多
关键词 知识图谱 交通运输专业 特色课程 知识抽取 知识融合
在线阅读 下载PDF
飞机性能工程课程知识图谱构建与教学实践
13
作者 褚双磊 闫凤良 +1 位作者 温瑞英 任强 《成都航空职业技术学院学报》 2025年第1期28-31,98,共5页
智慧课程建设是高等教育数字化转型的重要抓手,而知识图谱是智慧课程的基础。《飞机性能工程》课程是交通管理专业的核心课程之一。其知识体系经过重构,将课程知识点细化为6级知识结构。利用超星平台的知识图谱模块建立飞机性能工程的... 智慧课程建设是高等教育数字化转型的重要抓手,而知识图谱是智慧课程的基础。《飞机性能工程》课程是交通管理专业的核心课程之一。其知识体系经过重构,将课程知识点细化为6级知识结构。利用超星平台的知识图谱模块建立飞机性能工程的知识图谱,构建知识地图,实现了对知识点的动态描述。在教学中,知识图谱被用于以学生为中心的数智化教学,深度融合知识图谱的混合式教学设计得以实现,探索“人工智能+高等教育”的数字赋能教学创新改革与实践新范式。一方面,教师可以通过监控学生的线上学习行为,掌握班级学情分析,动态监督整个学习流程,精细化教学管理。另一方面,学生借助知识图谱理清知识脉络,颗粒化教学内容,构建全方位的专业知识体系,通过线上教学任务实现学习路径规划和个性化学习,促使学习深层化,提高学习耐性,为开展基于知识图谱的交通管理专业人才培养提供理论依据与数据支撑。 展开更多
关键词 知识图谱 智慧教学 精准管理 个性化学习
在线阅读 下载PDF
问题牵引式大学物理课程知识图谱探索与实践
14
作者 周可雅 孟庆鑫 +5 位作者 曹永印 张伶莉 丁卫强 任延宇 霍雷 张宇 《大学物理》 2025年第1期66-69,75,共5页
知识图谱是人工智能技术赋能现代教育的重要途径,课程知识图谱将教学内容拆解和系统梳理,构建知识点之间的相互关系并优化知识表达,对课程建设和人才培养具有划时代的意义.本文以2023年出版的《理工科类大学物理课程教学基本要求》为依... 知识图谱是人工智能技术赋能现代教育的重要途径,课程知识图谱将教学内容拆解和系统梳理,构建知识点之间的相互关系并优化知识表达,对课程建设和人才培养具有划时代的意义.本文以2023年出版的《理工科类大学物理课程教学基本要求》为依据构建了大学物理课程图谱,设计提出并实践了三种问题牵引式教学策略,完成了课程知识图谱的教学探索,能够为新工科视域下的数智化数理基础课程建设提供有益启示. 展开更多
关键词 知识图谱 大学物理 新工科 问题驱动式教育
在线阅读 下载PDF
中国农业技术推广研究现状与展望——基于Citespace知识图谱分析
15
作者 郑佩佩 王慧军 陶佩君 《安徽农业科学》 2025年第6期232-237,共6页
以CKNI数据库的SCI、CSSCI、核心期刊和博硕论文为样本数据,以Citespace软件与科学知识图谱为研究方法,对我国2006—2024年以来发布的农业技术推广领域文献进行研究。结果显示,我国农业技术推广的相关研究发文量呈下降趋势,研究人员少,... 以CKNI数据库的SCI、CSSCI、核心期刊和博硕论文为样本数据,以Citespace软件与科学知识图谱为研究方法,对我国2006—2024年以来发布的农业技术推广领域文献进行研究。结果显示,我国农业技术推广的相关研究发文量呈下降趋势,研究人员少,协作研究团队没有形成;研究内容主要为农业技术推广体系、传播手段和技术扩散,研究层次低,研究内容、方法缺乏创新;研究热点集中在推广体系、推广模式、运行机制,热点更新速度慢。提出要加强研究团队的合作,丰富研究内容。在乡村振兴战略和推进农业农村现代化的大背景下,急需深入研究我国农业技术推广的新型体系构建、传播者技能的素质提升、传播方式和方法的创新、法律政策的支持等内容。 展开更多
关键词 农业技术推广 文献计量研究 知识图谱 CITESPACE
在线阅读 下载PDF
历史报纸数据资源战争事件知识图谱构建研究——以“人民日报”(1946—1949)战争事件为例
16
作者 邓君 钟楚依 胡程杰 《现代情报》 北大核心 2025年第3期146-165,共20页
[目的/意义]在文化大数据战略背景下,推动历史报纸数据资源全面深度开发可助力文化大数据体系的搭建和完善。[方法/过程]本文以“人民日报(1946—1949)”战争事件为例,构建历史报纸数据资源战争事件本体,自动抽取战争事件及其组成要素,... [目的/意义]在文化大数据战略背景下,推动历史报纸数据资源全面深度开发可助力文化大数据体系的搭建和完善。[方法/过程]本文以“人民日报(1946—1949)”战争事件为例,构建历史报纸数据资源战争事件本体,自动抽取战争事件及其组成要素,结合所构本体模型和抽取数据绘制历史报纸数据资源战争事件知识图谱并完成语义查询。[结果/结论]实现历史报纸数据资源战争事件知识单元结构层次、特征内涵及联通关系形式化、规范化、细粒度地表征和组织,为逐步构建起领域知识库和提供精细化知识服务奠定基础,为历史报纸研究开发提供新视角和新思路,助力中华文化保护与传承。 展开更多
关键词 历史报纸 数据资源 战争事件 知识图谱 人民日报
在线阅读 下载PDF
乡村振兴视域下国内外农村产业结构研究热点及趋势分析
17
作者 张劲松 马梦如 杨单 《安徽农业科学》 2025年第2期232-240,共9页
产业兴旺是乡村振兴的基础,合理优化农村产业结构可以促进产业兴旺。通过知识图谱分析WOS和CNKI学术资料,深入探讨国内外农村产业结构的研究现状,根据现状重点分析国内农村产业结构的发展趋势和国外农村产业结构的发展演化路径。结果发... 产业兴旺是乡村振兴的基础,合理优化农村产业结构可以促进产业兴旺。通过知识图谱分析WOS和CNKI学术资料,深入探讨国内外农村产业结构的研究现状,根据现状重点分析国内农村产业结构的发展趋势和国外农村产业结构的发展演化路径。结果发现,通过起步期-蓬勃期-稳定期3个阶段的探索,全球范围内的农村产业结构发展模式正在发生巨大变革。未来我国的农村产业结构将以休闲农业、美丽乡村和结构调整为导向,提出关于农村产业结构的相关理论研究需要进行本土化调试等建议。 展开更多
关键词 农村产业结构 乡村振兴 产业兴旺 知识图谱
在线阅读 下载PDF
基于知识图谱的钻井顶部驱动装置故障智能诊断方法
18
作者 陈冬 肖远山 +2 位作者 尹志勇 张彦龙 叶智慧 《天然气工业》 北大核心 2025年第2期125-135,共11页
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井... 钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。 展开更多
关键词 钻井装备 顶部驱动装置 故障诊断 深度学习 知识图谱 自然语言处理 命名实体识别 智能问答系统
在线阅读 下载PDF
天津市防洪工程调度知识平台构建与实践
19
作者 刘业森 赵英虎 +5 位作者 张丽伟 李博达 李匡 郝苗 王晓岭 叶凯 《中国水利》 2025年第4期48-55,共8页
数字孪生水利是新质生产力在水利领域的一个具体表现,知识平台是数字孪生流域算法之一,可为数字孪生流域提供智能化支撑。面向天津市城市防洪调度应急指挥业务需求,基于防洪调度应急指挥平台功能要求,提出了防洪工程调度知识平台构建思... 数字孪生水利是新质生产力在水利领域的一个具体表现,知识平台是数字孪生流域算法之一,可为数字孪生流域提供智能化支撑。面向天津市城市防洪调度应急指挥业务需求,基于防洪调度应急指挥平台功能要求,提出了防洪工程调度知识平台构建思路以及核心由知识体系、知识引擎和知识服务组成的总体框架。研究了知识建模、知识抽取、知识融合、知识推理及知识存储的技术方法,构建了一套涵盖“知识库-主题知识图谱-知识网络”的多层次知识体系,开发了知识图谱管理引擎、大模型能力引擎和业务驱动知识引擎等多类别知识引擎,为天津市防洪调度应急指挥平台提供知识推荐与反馈能力。探索了基于知识增强大语言模型的防洪业务知识智能检索与问答系统,以及防洪调度“四预”、应急水量调度、雨洪资源利用调度等业务应用。介绍的建设经验和成果可为水利知识平台相关系统建设提供借鉴和参考。 展开更多
关键词 知识平台 知识图谱 知识引擎 水利大模型 防洪调度 应急水量调度 雨洪资源利用调度
在线阅读 下载PDF
基于“C-STEAM教育理念”的双创课程教学模式改革
20
作者 黄洁 李臻颖 《纺织科技进展》 2025年第2期68-71,78,共5页
提出以培养创新型人才为目标,将具有本土化特色的C-STEAM教育理念应用于高职院校双创课程教学模式改革中。从C-STEAM教育的育人价值、教育特征、评价维度3个方面与双创课程教学改革的育人目标、模式构建、质量评价进行融合分析,构建“... 提出以培养创新型人才为目标,将具有本土化特色的C-STEAM教育理念应用于高职院校双创课程教学模式改革中。从C-STEAM教育的育人价值、教育特征、评价维度3个方面与双创课程教学改革的育人目标、模式构建、质量评价进行融合分析,构建“三维五阶”递进式项目化教学新模式,搭建培养学生能力全过程的可视化“知识图谱”实践路径,拓展以文化基因为导向的综合评价指标体系,为高职院校双创教育提供有效范式。 展开更多
关键词 双创教育 C-STEAM 教学模式 实践路径 知识图谱
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部