With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizati...With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizational form of public opinion information,the knowledge graph is used to construct the knowledge base of public opinion risk cases on the emer-gency network.The emotion recognition model of negative pub-lic opinion information based on the bi-directional long short-term memory(BiLSTM)network is studied in the model layer design,and a linear discriminant analysis(LDA)topic extraction method combined with association rules is proposed to extract and mine the semantics of negative public opinion topics to real-ize further in-depth analysis of information topics.Focusing on public health emergencies,knowledge acquisition and knowl-edge processing of public opinion information are conducted,and the experimental results show that the knowledge graph framework based on the construction can facilitate in-depth theme evolution analysis of public opinion events,thus demon-strating important research significance for reducing online pub-lic opinion risks.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often comple...Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often complex and inadequate,making it challenging for researchers to conduct in-depth data mining to improve policies or management.To address this problem,this paper adopts a top-down approach to construct a knowledge graph(KG)for research projects.Firstly,we construct an integrated ontology by referring to the metamodel of various architectures,which is called the meta-model integration conceptual reference model.Subsequently,we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities,completing the construction of the KG for the research projects.In addition,a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG.Finally,experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG.展开更多
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo...Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.展开更多
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge grap...In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.展开更多
A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process an...A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.展开更多
Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in curr...Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in current knowledge transfer researches. The concept model of intra-firm horizontal knowledge transfer was described and a framework was provided to define the main components of the transfer process. Horizontal knowledge transfer is that knowledge is transferred from the source to the same hierarchical level recipients as the target. Horizontal knowledge transfer constitutes a strategic area of knowledge management research. However, little is known about the circumstances under which one particular mechanism is the most appropriate. To address these issues, some significant conclusions are drawn concerning knowledge transfer mechanisms in a real-world setting.展开更多
结合国内图书馆普遍开展的论文引证检索服务的实际需求,在大量工作实践的基础上,设计并实现了一款基于ISI Web of Knowledge平台检索结果引证检索统计报告的软件,能够根据不同的统计指标,对检索结果进行快速统计。实践证明,该软件提高...结合国内图书馆普遍开展的论文引证检索服务的实际需求,在大量工作实践的基础上,设计并实现了一款基于ISI Web of Knowledge平台检索结果引证检索统计报告的软件,能够根据不同的统计指标,对检索结果进行快速统计。实践证明,该软件提高了工作效率的同时,保证了正确率。展开更多
基于ISI Web of Knowledge平台,对8所纺织背景高校在2001—2011年间的科技论文进行了多角度的统计和分析,探讨了8所纺织背景高校近年来的学科发展现状和趋势,客观评价其学科研究特点和学术影响力,为纺织背景高校增强自身自然科学基础研...基于ISI Web of Knowledge平台,对8所纺织背景高校在2001—2011年间的科技论文进行了多角度的统计和分析,探讨了8所纺织背景高校近年来的学科发展现状和趋势,客观评价其学科研究特点和学术影响力,为纺织背景高校增强自身自然科学基础研究提供参考和帮助,并为其进一步发展提供可参考的定量依据.展开更多
The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of mu...The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of multi-agent F-knowledge are proposed, which includes the security transmission of multi-agent F-knowledge with positive direction secret key and the security transmission of multi-agent F-knowledge with reverse direction secret key. Finally, the recognition criterion and the applications of F-knowledge are presented. The security of F-knowledge is a new application research direction of S-rough sets in information systems.展开更多
随着学校对图书馆经费投入的不断增加,数字环境下图书馆的合理使用变得越来越重要,其表现在数字资源上要有较多的用户访问和下载.从成员馆对比、登录情况、检索情况和成本等角度统计分析了东华大学ISI Web of Knowledge数据库使用情况,...随着学校对图书馆经费投入的不断增加,数字环境下图书馆的合理使用变得越来越重要,其表现在数字资源上要有较多的用户访问和下载.从成员馆对比、登录情况、检索情况和成本等角度统计分析了东华大学ISI Web of Knowledge数据库使用情况,并分析讨论了读者群和多校区使用情况等,为图书馆电子资源订购提供有效依据.展开更多
As expert systems technology has matured and migrated into mainstream computing, there arestill areas which are overlooked in education prospective knowledge engineers. This paper addresses this issue, and provides a ...As expert systems technology has matured and migrated into mainstream computing, there arestill areas which are overlooked in education prospective knowledge engineers. This paper addresses this issue, and provides a message to educators that expert and knowledge-based systems should be an importantstrategic science and technology for many organizations.展开更多
The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to th...The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to the representation of knowledge to support the problem-solving strategy is presented which avoids commitment to a specific programming language or implementation environment. The problem of choosing a home is used to illustrate the representation of knowledge in a specific problem domain. Techniques for implementation of the problem-solving strategy are described. Knowledge elicitation techniques and their implementation in a development shell for application of the problem-solving strategy to any selection problem are also described.展开更多
The 21 st century is an era of knowledge, know le dge is said to be particularly important. Knowledge and information have become the economy’s primary raw material and its most important outcome. Under increas ingly...The 21 st century is an era of knowledge, know le dge is said to be particularly important. Knowledge and information have become the economy’s primary raw material and its most important outcome. Under increas ingly competitive pressure, many enterprises are examining how they can better m anage their knowledge. During the last years, another concept has gained increas ing interest: knowledge management. The emerging field of knowledge management a ddresses the broad processes of locating, organizing, transferring and more effi ciently using knowledge and expertise within an enterprise. An enterprise’s and its employees’ knowledge is regarded as the most important corporate capital in the arising global information society. Knowledge management therefore aims towa rds improving an enterprise’s ability to acquire, develop, preserve, distribute and use knowledge. This paper describes a conceptual model of knowledge manageme nt and innovation, focusing on analyzing the knowledge management and innovation process, trying to make knowledge more productive and create knowledge more eff iciently. In this paper, an integral and conceptual model of knowledge management and inno vation is presented first; then, the knowledge work process is analyzed, which i s conceptualized as a knowledge spiral; subsequently, knowledge management proce ss is conceptualized into knowledge development, knowledge acquisition, knowledg e transfer, knowledge sharing, knowledge utilization and knowledge evaluatio n, all of which can be conceptualized as a knowledge cycle; furthermore, the fac ilitating conditions for implementing knowledge management are analyzed; in the end, the input-output model of knowledge innovation is given as well as the mai n tools for assisting knowledge management are summarized.展开更多
The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engine...The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engineering. Starting with the construct of a social organization model driven by anticipationand thed differentiating this into pesonal scientists with diverse relations to people and their internal andexternal communication, it provides powerful and general model of society. people, and the roles of peoplein society. This model extends naturally ic the role of conventional media in the knowledge processes ofsociety and the new roles of computer-based simulation and expert systems. In particular it provides amodel of knowledge transfer that enables the processes of knowledge engineering to be analyzed andautomated.展开更多
There are both associations and differences between structured and unstructured data mining. How to unite them together to be a united theoretical framework and to guide the research of knowledge discovery and data mi...There are both associations and differences between structured and unstructured data mining. How to unite them together to be a united theoretical framework and to guide the research of knowledge discovery and data mining has become an urgent problem to be solved. On the base of analysis and study of existing research results, the united model of knowledge discovery state space (UMKDSS) is presented, and the structured data mining and the complex type data mining are associated together. UMKDSS can provide theoretical guidance for complex type data mining. An application example of UMKDSS is given at last.展开更多
This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario acc...This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.展开更多
基金supported by the National Social Science Foundation Major Project(22&ZD135)the National Social Science Fund National Emergency Management System Construction Research Project(20VYJ061).
文摘With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizational form of public opinion information,the knowledge graph is used to construct the knowledge base of public opinion risk cases on the emer-gency network.The emotion recognition model of negative pub-lic opinion information based on the bi-directional long short-term memory(BiLSTM)network is studied in the model layer design,and a linear discriminant analysis(LDA)topic extraction method combined with association rules is proposed to extract and mine the semantics of negative public opinion topics to real-ize further in-depth analysis of information topics.Focusing on public health emergencies,knowledge acquisition and knowl-edge processing of public opinion information are conducted,and the experimental results show that the knowledge graph framework based on the construction can facilitate in-depth theme evolution analysis of public opinion events,thus demon-strating important research significance for reducing online pub-lic opinion risks.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
基金supported by the National Natural Science Foundation of China(72101263).
文摘Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often complex and inadequate,making it challenging for researchers to conduct in-depth data mining to improve policies or management.To address this problem,this paper adopts a top-down approach to construct a knowledge graph(KG)for research projects.Firstly,we construct an integrated ontology by referring to the metamodel of various architectures,which is called the meta-model integration conceptual reference model.Subsequently,we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities,completing the construction of the KG for the research projects.In addition,a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG.Finally,experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG.
基金supported by the National Key R&D Program of China(Grant No.2023YFC3010803)the National Nature Science Foundation of China(Grant No.52272424)+1 种基金the Key R&D Program of Hubei Province of China(Grant No.2023BCB123)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2023IVB079)。
文摘Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.
基金supported by the National Key Laboratory for Comp lex Systems Simulation Foundation (6142006190301)。
文摘In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.
基金supported by the National Natural Science Foundation of China(71472055 71871007)+2 种基金National Social Science Foundation of China(16AZD0006)Heilongjiang Philosophy and Social Science Research Project(19GLB087)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2019033)
文摘A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.
文摘Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in current knowledge transfer researches. The concept model of intra-firm horizontal knowledge transfer was described and a framework was provided to define the main components of the transfer process. Horizontal knowledge transfer is that knowledge is transferred from the source to the same hierarchical level recipients as the target. Horizontal knowledge transfer constitutes a strategic area of knowledge management research. However, little is known about the circumstances under which one particular mechanism is the most appropriate. To address these issues, some significant conclusions are drawn concerning knowledge transfer mechanisms in a real-world setting.
文摘基于ISI Web of Knowledge平台,对8所纺织背景高校在2001—2011年间的科技论文进行了多角度的统计和分析,探讨了8所纺织背景高校近年来的学科发展现状和趋势,客观评价其学科研究特点和学术影响力,为纺织背景高校增强自身自然科学基础研究提供参考和帮助,并为其进一步发展提供可参考的定量依据.
基金supported partly by the Natural Science Foundation of Fujian Province of China(2009J01293)the Natural Science Foundation of Shandong Province of China(Y2007H02).
文摘The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of multi-agent F-knowledge are proposed, which includes the security transmission of multi-agent F-knowledge with positive direction secret key and the security transmission of multi-agent F-knowledge with reverse direction secret key. Finally, the recognition criterion and the applications of F-knowledge are presented. The security of F-knowledge is a new application research direction of S-rough sets in information systems.
文摘随着学校对图书馆经费投入的不断增加,数字环境下图书馆的合理使用变得越来越重要,其表现在数字资源上要有较多的用户访问和下载.从成员馆对比、登录情况、检索情况和成本等角度统计分析了东华大学ISI Web of Knowledge数据库使用情况,并分析讨论了读者群和多校区使用情况等,为图书馆电子资源订购提供有效依据.
文摘As expert systems technology has matured and migrated into mainstream computing, there arestill areas which are overlooked in education prospective knowledge engineers. This paper addresses this issue, and provides a message to educators that expert and knowledge-based systems should be an importantstrategic science and technology for many organizations.
文摘The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to the representation of knowledge to support the problem-solving strategy is presented which avoids commitment to a specific programming language or implementation environment. The problem of choosing a home is used to illustrate the representation of knowledge in a specific problem domain. Techniques for implementation of the problem-solving strategy are described. Knowledge elicitation techniques and their implementation in a development shell for application of the problem-solving strategy to any selection problem are also described.
文摘The 21 st century is an era of knowledge, know le dge is said to be particularly important. Knowledge and information have become the economy’s primary raw material and its most important outcome. Under increas ingly competitive pressure, many enterprises are examining how they can better m anage their knowledge. During the last years, another concept has gained increas ing interest: knowledge management. The emerging field of knowledge management a ddresses the broad processes of locating, organizing, transferring and more effi ciently using knowledge and expertise within an enterprise. An enterprise’s and its employees’ knowledge is regarded as the most important corporate capital in the arising global information society. Knowledge management therefore aims towa rds improving an enterprise’s ability to acquire, develop, preserve, distribute and use knowledge. This paper describes a conceptual model of knowledge manageme nt and innovation, focusing on analyzing the knowledge management and innovation process, trying to make knowledge more productive and create knowledge more eff iciently. In this paper, an integral and conceptual model of knowledge management and inno vation is presented first; then, the knowledge work process is analyzed, which i s conceptualized as a knowledge spiral; subsequently, knowledge management proce ss is conceptualized into knowledge development, knowledge acquisition, knowledg e transfer, knowledge sharing, knowledge utilization and knowledge evaluatio n, all of which can be conceptualized as a knowledge cycle; furthermore, the fac ilitating conditions for implementing knowledge management are analyzed; in the end, the input-output model of knowledge innovation is given as well as the mai n tools for assisting knowledge management are summarized.
文摘The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engineering. Starting with the construct of a social organization model driven by anticipationand thed differentiating this into pesonal scientists with diverse relations to people and their internal andexternal communication, it provides powerful and general model of society. people, and the roles of peoplein society. This model extends naturally ic the role of conventional media in the knowledge processes ofsociety and the new roles of computer-based simulation and expert systems. In particular it provides amodel of knowledge transfer that enables the processes of knowledge engineering to be analyzed andautomated.
文摘There are both associations and differences between structured and unstructured data mining. How to unite them together to be a united theoretical framework and to guide the research of knowledge discovery and data mining has become an urgent problem to be solved. On the base of analysis and study of existing research results, the united model of knowledge discovery state space (UMKDSS) is presented, and the structured data mining and the complex type data mining are associated together. UMKDSS can provide theoretical guidance for complex type data mining. An application example of UMKDSS is given at last.
文摘This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.