Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidati...In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.展开更多
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori...Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.展开更多
This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy ...This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.展开更多
In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a ...In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.展开更多
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and...In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.展开更多
A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, ...A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution.展开更多
As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperatu...As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperature in situ observation equiPment,the interface changes of Bi_(12)SiO_(20) crystal growth from melt were studied.展开更多
The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluori...The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.展开更多
The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficie...The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.展开更多
In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature...In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature,Fe^(3+)concentration,pH of solution and bacteria concentration were investigated.The leaching kinetics of the pyrite,chalcocite and covellite under the studied conditions was successfully modeled by an empirical diffusion-like equation,respectively.The apparent activity energy of pyrite leaching,chalcocite leaching(stage Ⅱ)and covellite leaching was calculated to be 69.29,65.02 and 84.97 kJ/mol,respectively.展开更多
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly...This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.展开更多
A novel process was proposed for the utilization of potash feldspar by roasting in the presence of sodium carbonate. The effects of roasting temperature, granularity, molar ratio of sodium carbonate to potash feldspar...A novel process was proposed for the utilization of potash feldspar by roasting in the presence of sodium carbonate. The effects of roasting temperature, granularity, molar ratio of sodium carbonate to potash feldspar and roasting time on the silica extraction rate were investigated. Under the optimal roasting conditions, the silica extraction rate was 98%. The optimal conditions, determined using an orthogonal experiment, were found to be roasting temperature of 875 A degrees C, potash feldspar granularity of 74-89 mu m, molar ratio of sodium carbonate to potash feldspar of 1.2:1, and roasting time of 80 min. The kinetics of potash feldspar roasting in the presence of sodium carbonate was described by the shrinking core model and the reaction rate was found to be controlled by the chemical reaction at the particle surface. According to the Arrhenius expression, the activation energy was 164.99 kJ/mol, and the process could be expressed as [1-(1-alpha)(1/3)]=2.66x10(5) exp[-164990/(RT)] t.展开更多
The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning cal...The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.展开更多
The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching effic...The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.展开更多
Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory ...Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory flotation cell.Experimental results show that the rod mill product has higher roughness than the ball mill product.For the particles with larger surface roughness,the flotation kinetics constant is also higher.Finally,empirical relationships between surface roughness(r) and the flotation kinetics constant(k) of quartz particles as k=A+Br+Cr0.5lnr+D/lnr+E/r and k=A+Br are presented,in which A,B,C,D and E are constants related to experimental conditions and mineralogical properties of mineral.展开更多
Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wolla...Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.展开更多
The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloy...The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the ...In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.展开更多
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
基金Project(2022M710619)supported by the Postdoctoral Science Foundation of ChinaProjects(2020YFH0213,2020YFG0039)supported by the Sichuan Science and Technology Program,China+1 种基金Projects(XJ2024001501,KCXTD2023-4)supported by the Basic Scientific Foundation and Innovation Team Funds of China West Normal UniversityProject(CSPC202403)supported by the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,China。
文摘In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.
文摘Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.
基金supported by the Natural Science Foundation of Shanxi Province(Grant No.202203021221120)The Open Fund of MCRI-Shannxi Laboratory of Energetic Materials(Grant No.204-J-2024-2622)。
文摘This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement with Zelinsky Institute of Organic Chemistry RAS Grant No.075-15-2020-803).
文摘In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.
文摘In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.
基金Projects(50871050,50961001) supported by the National Natural Science Foundation of ChinaProject(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by the High Education Science Research Program of Inner Mongolia,China
文摘A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution.
文摘As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperature in situ observation equiPment,the interface changes of Bi_(12)SiO_(20) crystal growth from melt were studied.
基金Project(51474237)supported by the National Natural Science Foundation of China
文摘The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.
基金Project(2005BA639C) supported by the National Science and Technology Development of China
文摘The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.
基金Project(51574036)supported by the National Natural Science Foundation of China。
文摘In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature,Fe^(3+)concentration,pH of solution and bacteria concentration were investigated.The leaching kinetics of the pyrite,chalcocite and covellite under the studied conditions was successfully modeled by an empirical diffusion-like equation,respectively.The apparent activity energy of pyrite leaching,chalcocite leaching(stage Ⅱ)and covellite leaching was calculated to be 69.29,65.02 and 84.97 kJ/mol,respectively.
基金DRDO(TBR-1251)for funding and awarding the Project
文摘This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.
基金Project(51204054)supported by the National Natural Science Foundation of ChinaProject(2007CB613603)supported by the National Basic Research Program of ChinaProject(N140204011)supported by the Ministry of Education Basic Scientific Research Business Expenses,China
文摘A novel process was proposed for the utilization of potash feldspar by roasting in the presence of sodium carbonate. The effects of roasting temperature, granularity, molar ratio of sodium carbonate to potash feldspar and roasting time on the silica extraction rate were investigated. Under the optimal roasting conditions, the silica extraction rate was 98%. The optimal conditions, determined using an orthogonal experiment, were found to be roasting temperature of 875 A degrees C, potash feldspar granularity of 74-89 mu m, molar ratio of sodium carbonate to potash feldspar of 1.2:1, and roasting time of 80 min. The kinetics of potash feldspar roasting in the presence of sodium carbonate was described by the shrinking core model and the reaction rate was found to be controlled by the chemical reaction at the particle surface. According to the Arrhenius expression, the activation energy was 164.99 kJ/mol, and the process could be expressed as [1-(1-alpha)(1/3)]=2.66x10(5) exp[-164990/(RT)] t.
文摘The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.
基金Project(2007CB613604) supported by the Major State Basic Research Development Program of ChinaProject(50674104) supported by the National Natural Science Foundation of ChinaProject(GJJ08279) supported by the Department of Education of Jiangxi Province
文摘The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.
文摘Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory flotation cell.Experimental results show that the rod mill product has higher roughness than the ball mill product.For the particles with larger surface roughness,the flotation kinetics constant is also higher.Finally,empirical relationships between surface roughness(r) and the flotation kinetics constant(k) of quartz particles as k=A+Br+Cr0.5lnr+D/lnr+E/r and k=A+Br are presented,in which A,B,C,D and E are constants related to experimental conditions and mineralogical properties of mineral.
基金Project(51308086)supported by the National Natural Science Foundation of ChinaProject(LJQ2015020)supported by the Program for Liaoning Excellent Talents in University,ChinaProject(2016RQ051)supported by the Program of Science-Technology Star for Young Scholars by the Dalian Municipality,China
文摘Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Project of China
文摘The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of ChinaProject(2015M571324)supported by the Postdoctoral Science Foundation of China
文摘In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.