Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the...A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.展开更多
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy...Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.展开更多
This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature...This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers.展开更多
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(...The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.展开更多
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ...In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).展开更多
Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for grou...Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses.展开更多
We present a new methodology to statistically determine the net present value(NPV)and internal rate of return(IRR)as financial estimators of shale gas investments.Our method allows us to forecast,in a fully probabilis...We present a new methodology to statistically determine the net present value(NPV)and internal rate of return(IRR)as financial estimators of shale gas investments.Our method allows us to forecast,in a fully probabilistic setting,financial performance risk and to understand the importance of the different factors that impact investment.The methodology developed in this study combines,through Monte Carlo simulation,the computational modeling of gas production from shale gas wells with a stochastic simulation of gas price as a geometric Brownian motion(GMB).To illustrate the methodology's validity,we apply it to an analysis of investments in shale gas wells.Our results show that gas price volatility is a key variable in the performance of an investment of this type,in such a way that at high volatilities,the potential return on an investment in shale gas increases significantly,but so do the risks of economic loss.This finding is consistent with the history of shale gas operations in which huge investment successes coexist with unexpected investment failures.展开更多
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471263)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2021D01B09)+1 种基金the Initial Research Foundation of Kashi University(Grant No.022024076)“Mathematics and Finance Research Centre Funding Project”,Dazhou Social Science Federation(Grant No.SCMF202305)。
文摘A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.
基金supported by the National Natural Science Foundation of China(No.U21B2062)the Natural Science Foundation of Hubei Province(No.2023AFB307)。
文摘Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.
基金supported by the YSBR-001,the NSFC(12201597)research funds from USTC(University of Science and Technology of China)and CAS(Chinese Academy of Sciences)+2 种基金supported by the YSBR-001the NSFC(11971452,12026251)a research fund from USTC.
文摘This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers.
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
基金This work was supported by the National Natural Science Foundation of China(Nos.11875027,11975096).
文摘The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY21A010016)the National Natural Science Foundation of China(11901550).
文摘In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
基金Coordenacao de Aperfeicoamento de Pessoal de Nível Superior - Brasil (CAPES)Fundacao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)+2 种基金Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)financed in part by Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance code 001,Fundacao de Amparoa Pesquisa do Estado do Rio Grande do Sul(FAPERGS)-Finances code 17/2551-0000935-5,22/2551-0001051-2,21/2551-0002255-8Conselho Nacional de Desenvolvimento Científico e Tecnologico(CNPq)-Finance codes 205518/2018-4,312603/2018-5.
文摘Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses.
基金partially funded by Goverment of Spain,Ministry of Science,Innovation and Universities(grant:RTI2018093366-B-I00)by Goverment of Spain,Ministry of Universities(grant:Subsidies to Public Universities for the Requalification of the Spanish University System,“Margarita Salas”Grants Modality for the Training of Young Doctors,RD 289/2021 of April 20)+1 种基金by the Xunta de Galicia,Consellería de Educacion e Ordenación Universitaria(grant:#ED431C 2018/41)by the Group of Numerical Methods in Engineering of the Universidade de A Coruna。
文摘We present a new methodology to statistically determine the net present value(NPV)and internal rate of return(IRR)as financial estimators of shale gas investments.Our method allows us to forecast,in a fully probabilistic setting,financial performance risk and to understand the importance of the different factors that impact investment.The methodology developed in this study combines,through Monte Carlo simulation,the computational modeling of gas production from shale gas wells with a stochastic simulation of gas price as a geometric Brownian motion(GMB).To illustrate the methodology's validity,we apply it to an analysis of investments in shale gas wells.Our results show that gas price volatility is a key variable in the performance of an investment of this type,in such a way that at high volatilities,the potential return on an investment in shale gas increases significantly,but so do the risks of economic loss.This finding is consistent with the history of shale gas operations in which huge investment successes coexist with unexpected investment failures.