期刊文献+
共找到2,141篇文章
< 1 2 108 >
每页显示 20 50 100
Fast cross validation for regularized extreme learning machine 被引量:9
1
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (ELM) regularization theory cross validation neural networks.
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
2
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
Constrained voting extreme learning machine and its application 被引量:5
3
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(ELM) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
4
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
在线阅读 下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
5
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
在线阅读 下载PDF
Thickness of excavation damaged zone estimation using four novel hybrid ensemble learning models : A case study of Xiangxi Gold Mine and Fankou Lead-zinc Mine in China
6
作者 LIU Lei-lei HONG Zhi-xian +1 位作者 ZHAO Guo-yan LIANG Wei-zhang 《Journal of Central South University》 CSCD 2024年第11期3965-3982,共18页
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick... Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting. 展开更多
关键词 excavation damaged zone machine learning simulated annealing Bayesian optimization extreme gradient boosting random forest
在线阅读 下载PDF
A Novel Kernel for Least Squares Support Vector Machine
7
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
在线阅读 下载PDF
构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性 被引量:2
8
作者 杨文 杨蔚 +5 位作者 周晓平 杨妍 张宁妹 尹清云 张朝林 刘召弟 《磁共振成像》 北大核心 2025年第1期118-126,145,共10页
目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病... 目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。 展开更多
关键词 非肿块强化 乳腺癌 极端梯度提升 机器学习 磁共振成像 乳腺X线摄影
在线阅读 下载PDF
基于集成经验模态分解和极限学习机的质子交换膜燃料电池寿命预测 被引量:2
9
作者 陈景文 杨淇 +2 位作者 兰天一 华志广 赵冬冬 《太阳能学报》 北大核心 2025年第2期135-141,共7页
基于数据驱动的预测方法可实现质子交换膜燃料电池(PEMFC)的寿命预测。为提高质子交换膜燃料电池(PEMFC)寿命预测精度,提出将集成经验模态分解(EEMD)和粒子群算法(PSO)优化极限学习机(ELM)相结合的PEMFC剩余使用寿命预测方法。首先,采... 基于数据驱动的预测方法可实现质子交换膜燃料电池(PEMFC)的寿命预测。为提高质子交换膜燃料电池(PEMFC)寿命预测精度,提出将集成经验模态分解(EEMD)和粒子群算法(PSO)优化极限学习机(ELM)相结合的PEMFC剩余使用寿命预测方法。首先,采用移动平均滤波法在滤除噪声和尖峰的同时,保留原始数据的主要趋势;其次,通过EEMD对原始数据进行多时间尺度分解,得到不同时间尺度下PEMFC的老化信息;最后,将分解后的本征模函数分别通过PSO优化的ELM模型进行预测,能在保证预测精度的情况下降低运算复杂度。通过与经典的极限学习机模型预测结果进行对比,该方法能更加准确地预测PEMFC的老化趋势。 展开更多
关键词 质子交换膜燃料电池 预测 经验模态分解 极限学习机
在线阅读 下载PDF
刮板输送机断链智能监测技术研究 被引量:3
10
作者 李灵锋 张洁 +2 位作者 陈茁 查天任 尹瑞 《工矿自动化》 北大核心 2025年第3期63-69,77,共8页
针对现有基于AI算法的煤矿井下刮板输送机断链监测技术在线学习能力低、检测精度差、稳定性低、复杂场景适应性和可靠性差等问题,通过在极限学习机(ELM)中增加增量式在线训练,设计了可实现离线样本和实时在线样本训练的在线贯序极限学习... 针对现有基于AI算法的煤矿井下刮板输送机断链监测技术在线学习能力低、检测精度差、稳定性低、复杂场景适应性和可靠性差等问题,通过在极限学习机(ELM)中增加增量式在线训练,设计了可实现离线样本和实时在线样本训练的在线贯序极限学习机(OSELM)网络,进而提出了基于OSELM的刮板输送机断链智能监测技术。将经过大量煤矿井下刮板输送机链条监控图像(离线样本)训练的OSELM网络算法写入AI摄像仪,将AI摄像仪安装于刮板输送机机尾,实时感知刮板输送机链条运行状态并进行在线学习,由AI摄像仪输出控制决策,并通过刮板输送机集中控制系统平台实时显示识别结果。井下工业性试验结果表明,OSELM网络具有较高的自主学习能力、较强的泛化性和鲁棒性,对刮板输送机断链识别的平均精度均值、准确率和精确率分别为98.6%,99.3%,91.7%,检测速度达205.6帧/s,整体效果优于深度神经网络融合网络、RT-DETR、YOLOv5、YOLOv8、ELM等模型,实现了刮板输送机链条状态的精准、实时检测。 展开更多
关键词 刮板输送机 链条状态识别 断链监测 AI摄像仪 在线贯序极限学习机网络
在线阅读 下载PDF
基于电力系统受扰后频率最低点预测的一次调频优化研究 被引量:1
11
作者 张国斌 沈烨昱 +3 位作者 霍红岩 郭瑞君 牛玉广 柳双翠 《太阳能学报》 北大核心 2025年第5期89-98,共10页
为了提升新型电力系统下的频率稳定性,提出一种基于电力系统受扰后频率最低点预测的一次调频优化方法。首先为了准确预测电力系统受到扰动后的频率变化特征,分析频率偏差的产生机理,选取切机等功率不平衡事件的相关影响变量,结合极限学... 为了提升新型电力系统下的频率稳定性,提出一种基于电力系统受扰后频率最低点预测的一次调频优化方法。首先为了准确预测电力系统受到扰动后的频率变化特征,分析频率偏差的产生机理,选取切机等功率不平衡事件的相关影响变量,结合极限学习机(ELM),建立基于ELM神经网络的电力系统频率最低点预测模型,并采用蜣螂算法(DBO)对ELM优化输入权值和隐含层阈值,降低ELM随机生成参数的不稳定性。然后设计基于预测信号的一次调频优化策略。在IEEE 39节点上开展仿真试验,结果显示DBO-ELM算法在预测频率最低点时具有更快的计算速度、更强的泛化能力以及更高的预测精度,所提的一次调频优化策略能有效提升频率稳定性,可为电力系统大频差扰动提供解决方案。 展开更多
关键词 预测模型 电力系统 一次调频 极限学习机 蜣螂算法 频率最低点
在线阅读 下载PDF
基于改进YOLOv11与GWO-ELM的食品生产线黄桃自动分级方法 被引量:1
12
作者 彭永杰 赵良军 龙绪明 《食品与机械》 北大核心 2025年第5期89-97,共9页
[目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进... [目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进YOLOv11模型识别缺陷,并结合果型指数与色泽判定外部品质。内部品质则通过高光谱仪采集,经特征筛选后,输入改进灰狼算法优化的极限学习机模型中检测可溶性固形物和硬度指标判定内部品质。结合外部品质和内部品质对黄桃进行分级。通过试验对其性能进行验证。[结果]试验方法可以实现食品生产线黄桃内外品质的有效检测,综合内部品质具有较高的分级准确率和效率,分级准确率大于95.00%,平均分级时间小于0.3 s。[结论]将机器视觉、高光谱技术以及智能算法相结合,可实现食品品质的快速无损检测。 展开更多
关键词 食品生产线 黄桃 自动分级 机器视觉 高光谱技术 YOLOv11 极限学习机
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:2
13
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于EWT-WOA-ELM的电气线路发光连接诊断方法
14
作者 吕亮 杨鹏涛 +2 位作者 朱恺 徐阳 汲胜昌 《消防科学与技术》 北大核心 2025年第10期1547-1559,共13页
接触不良是低压线路中常见的火灾诱因,接触不良达到一定高温后会引发电气线路发生发光连接故障,具有极大的火灾隐患。为了对电气线路发光连接故障进行诊断,提出了基于经验小波变换(EWT)的时频域特征提取方法,并基于融合特征集,使用鲸鱼... 接触不良是低压线路中常见的火灾诱因,接触不良达到一定高温后会引发电气线路发生发光连接故障,具有极大的火灾隐患。为了对电气线路发光连接故障进行诊断,提出了基于经验小波变换(EWT)的时频域特征提取方法,并基于融合特征集,使用鲸鱼优化算法(WOA)获取了极限学习机(ELM)的最优输入权值和隐含阈值,并提出了基于EWT-WOA-ELM的神经网络模型。结果表明:模型的最优隐含层神经元个数为18,本模型交叉验证平均准确率和平均交叉熵损失分别为96%和0.6239,实现了不同工况下对正常状态、发光连接阶段前期和末期的故障诊断。采取不同试验室的数据使用本模型进行验证,发现模型识别状态与实际状态一致。 展开更多
关键词 发光连接 故障诊断 机器学习 极限学习机
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测 被引量:1
15
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习机 改进粒子群优化算法
在线阅读 下载PDF
比较多种机器学习模型预测肺移植术后受者生存
16
作者 史灵芝 刘亚灵 +7 位作者 严浩吉 喻赠玮 侯森林 刘明昭 杨航 吴波 田东 陈静瑜 《器官移植》 北大核心 2025年第2期264-271,共8页
目的 比较不同机器学习算法构建的预后模型在预测肺移植(LTx)受者生存期方面的性能和表现。方法 回顾性收集483例行LTx手术的受者资料,所有受者按7∶3的比例分为训练集和验证集,将收集到的24个变量基于变量重要性(VIMP)进行筛选,利用随... 目的 比较不同机器学习算法构建的预后模型在预测肺移植(LTx)受者生存期方面的性能和表现。方法 回顾性收集483例行LTx手术的受者资料,所有受者按7∶3的比例分为训练集和验证集,将收集到的24个变量基于变量重要性(VIMP)进行筛选,利用随机生存森林(RSF)和极端梯度提升树(XGBoost)构建预后模型,使用综合曲线下面积(iAUC)和时间依赖曲线下面积(t AUC)进行模型性能评估。结果 训练集和验证集的各变量差异均无统计学意义。基于VIMP筛选排名前15的变量用于建模并确定重症监护室(ICU)住院时间为最重要的因素。与XGBoost模型相比,RSF模型在预测受者生存期方面表现出更好的性能(i AUC0.773比0.723)。在预测受者6个月生存期(tAUC6个月0.884比0.809,P=0.009)和1年生存期(tAUC1年0.896比0.825,P=0.013)方面,RSF模型也表现出更好的性能。基于两种算法的预测截断值,将LTx术后受者分为高风险组和低风险组,两种模型的生存分析结果均显示高风险组受者的生存率低于低风险组(P<0.001)。结论 与XGBoost相比,基于RSF算法开发的机器学习预后模型可以更好地预测LTx受者的生存期。 展开更多
关键词 肺移植 机器学习 预测模型 随机生存森林 极端梯度提升树 生存期 比例风险回归模型 重症监护室
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
17
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
18
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型 被引量:1
19
作者 王恒迪 王豪馗 +2 位作者 陈鹏 吴升德 马盈丰 《机电工程》 北大核心 2025年第6期1093-1101,共9页
针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解... 针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解的精确度,并采用最小残差指数(REI)作为最优模态分量的选取准则,从最优模态分量中提取了故障信号时域、频域及熵值的关键特征;然后,将所提取的特征输入EELM中进行了故障识别;最后,采用Yager加权平均规则对EELM的分类结果进行了融合,得到了综合故障诊断结果。研究结果表明:IVYA-FMD在信号处理过程中,具有优秀的特征提取和抗干扰能力,可有效提取原始信号的故障特征;IVYA-FMD和EELM-Yager模型在实验数据中,训练集与测试集按照8∶2的比例进行分割时的准确率达到99.12%;当训练集与测试集按照2:8的比例进行分割时,该方法在实验数据中的准确率高达92.5%,在CWRU数据集和SEU数据集中的准确率均超过96.8%。与其他智能诊断模型相比,IVYA-FMD和EELM-Yager在小样本滚动轴承故障诊断领域展现出显著的可行性和优越性。 展开更多
关键词 特征模态分解 常春藤算法 集成极限学习机 Yager加权平均 小样本故障诊断 滚动轴承
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
20
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习机 向量加权平均算法 误差修正模型
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部