期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种新的保类内核Fisher判别法及说话人辨别应用 被引量:1
1
作者 郑建炜 王万良 《计算机科学》 CSCD 北大核心 2010年第7期243-247,共5页
在保留数据本质特征的前提下,降低数据维度是一种重要的分类预处理手段。深入分析了核Fisher判别(KFD)方法与核化全局局部保持Fisher投影(KLFDA)方法的相互关系与优缺点,提出了一种新的基于类内特性保持的核化Fisher判别分析方法(LW-KFD... 在保留数据本质特征的前提下,降低数据维度是一种重要的分类预处理手段。深入分析了核Fisher判别(KFD)方法与核化全局局部保持Fisher投影(KLFDA)方法的相互关系与优缺点,提出了一种新的基于类内特性保持的核化Fisher判别分析方法(LW-KFD)。在保留KFD全局最优投影能力的同时,解决了KLFDA的过度局部保持问题,从而对重叠(离群)样本与多态分簇样本都能实现有效的分类投影。提出了快速训练算法,解决了大量训练样本时的内存溢出问题。仿真实验与说话人辨别应用表明,该方法具有很强的适应性,并提高了说话人识别率与识别速度。 展开更多
关键词 fisher判别分析 局部保持投影 说话人辨别 核技巧 维度削减
在线阅读 下载PDF
基于转子故障数据集的KSELF降维方法 被引量:2
2
作者 户文刚 赵荣珍 《振动.测试与诊断》 EI CSCD 北大核心 2021年第1期13-18,197,共7页
针对故障诊断中呈现强非线性的故障数据集维数过高以及有标签故障样本不足的问题,引入核方法和半监督思想,提出了一种基于核半监督局部Fisher判别分析(kernel semi⁃supervised local Fisher discriminant analysis,简称KSELF)的降维方... 针对故障诊断中呈现强非线性的故障数据集维数过高以及有标签故障样本不足的问题,引入核方法和半监督思想,提出了一种基于核半监督局部Fisher判别分析(kernel semi⁃supervised local Fisher discriminant analysis,简称KSELF)的降维方法。首先,通过核方法将原始故障数据集映射到高维特征空间中;其次,在高维空间中基于半监督局部Fisher判别分析得出投影转换矩阵;最后,用一双跨度转子实验台的故障特征数据集对所提出的方法进行了验证。所提出的KSELF降维方法能够有效捕捉数据的非线性信息,并能充分利用少量标签样本和大量无标签故障样本中的故障信息,避免了过学习问题。实验结果表明,KSELF方法相比实验中的其他方法,其降维能力稳定,能够获得更好的降维效果和更高的分类准确率。 展开更多
关键词 维数约简 核半监督局部fisher判别分析 核方法 半监督学习
在线阅读 下载PDF
基于局部Fisher判别分析的复杂化工过程故障诊断 被引量:7
3
作者 郭金玉 韩建斌 +1 位作者 李元 徐进学 《计算机应用研究》 CSCD 北大核心 2018年第4期1122-1125,1129,共5页
为了提高复杂化工过程中故障检测和分类能力,提出基于局部Fisher判别分析(local Fisher discriminant analysis,LFDA)的复杂化工过程故障诊断方法。首先计算训练数据的局部类内和类间离散度矩阵,寻找LFDA的投影方向;其次把训练数据和测... 为了提高复杂化工过程中故障检测和分类能力,提出基于局部Fisher判别分析(local Fisher discriminant analysis,LFDA)的复杂化工过程故障诊断方法。首先计算训练数据的局部类内和类间离散度矩阵,寻找LFDA的投影方向;其次把训练数据和测试数据向投影向量上投影,提取特征向量;最后计算特征向量间的欧氏距离,运用KNN分类器进行分类。把提议的LFDA方法应用到Tennessee Eastman(TE)过程,监控结果表明,LFDA的效果好于FDA和核Fisher判别分析(kernel Fisher discriminant analysis,KFDA),说明LFDA方法在分类及检测不同类的故障方面具有高准确性及高灵敏度的优势。 展开更多
关键词 复杂化工过程 故障诊断 fisher判别分析 fisher判别分析 局部fisher判别分析 KNN分类器
在线阅读 下载PDF
半监督稀疏鉴别核局部线性嵌入的非线性过程故障检测 被引量:3
4
作者 任世锦 李新玉 +2 位作者 徐桂云 潘剑寒 杨茂云 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期49-58,共10页
复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算... 复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算法,能够保持样本的局部几何信息,忽视了总体数据样本集全局/非局部鉴别信息.针对上述问题,本文提出一种新的半监督稀疏鉴别核局部线性嵌入(semi-supervised sparse discriminantKLLE,SSDKLLE)算法并用于非线性工业过程故障检测.本文主要贡献如下:(1)把半监督学习与Fisher鉴别分析(fisher discriminant analysis,FDA)引入到KLLE,有效地利用了总体数据集几何鉴别信息,提高了算法对不同类别数据的分离性;(2)基于稀疏表示通过重构优化方法对信号自适应稀疏表达的优点,利用稀疏表示自适应选择最近邻样本以及数目,提高算法鲁棒性和局部保持性能;(3)引入局部邻域处理以及核技巧策略降低过程工况数据变化对监测算法的影响,提高非线性多工况过程监测方法的性能.基于UCI数据和TE平台的仿真实验结果验证了所提算法的有效性. 展开更多
关键词 过程故障检测 核局部线性嵌入 半监督学习 fisher鉴别分析 稀疏表示
在线阅读 下载PDF
核协同近邻表示的人脸识别算法 被引量:3
5
作者 李昆仑 李尚然 +1 位作者 王琳 巩春景 《小型微型计算机系统》 CSCD 北大核心 2018年第10期2320-2325,共6页
协同近邻表示分类算法将协同表示和线性保持嵌入算法结合,在处于欧式空间的训练样本中寻找未知样本的最近邻表示基,但协同近邻表示属于线性算法,很难利用样本间的非线性关系.核局部Fisher判别分析的核局部投影空间能够保持样本的最小类... 协同近邻表示分类算法将协同表示和线性保持嵌入算法结合,在处于欧式空间的训练样本中寻找未知样本的最近邻表示基,但协同近邻表示属于线性算法,很难利用样本间的非线性关系.核局部Fisher判别分析的核局部投影空间能够保持样本的最小类内离散度和最大类间离散度,使同类样本更容易聚集到一起,核方法的非线性投影将样本投影到高维的核空间中,改变样本的空间分布,使得输入空间中线性不可分的特征向量在核空间中线性可分.本文利用核方法在解决非线性问题时的优势,对协同近邻表示算法进行两点改进:1)在核局部投影空间中定义新的度量方法,寻找未知样本的最近邻表示基,提出基于核局部投影度量的协同近邻表示算法. 2)将所有样本投影到核空间,在核空间中构造协同近邻表示,提出基于核方法的协同近邻表示算法.在ORL、AR及Extended Yale B等人脸库上的测试结果证明改进算法的有效性. 展开更多
关键词 协同近邻表示 核方法 核局部fisher判别分析 欧式距离
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部