期刊文献+
共找到274篇文章
< 1 2 14 >
每页显示 20 50 100
Kernel Factor Analysis Algorithm with Varimax
1
作者 夏国恩 金炜东 张葛祥 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期394-399,共6页
Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle com... Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition. 展开更多
关键词 kernel factor analysis kernel principal component analysis Support vector machine Varimax ALGORITHM Handwritten digit recognition
在线阅读 下载PDF
基于多复合测井参数的复杂岩性核主元识别方法——以开鲁盆地陆西凹陷九佛堂组储层为例
2
作者 裴家学 郭晗 +5 位作者 周立国 张甲明 田涯 李皓 李雪英 隋强 《大庆石油地质与开发》 北大核心 2025年第2期136-146,共11页
开鲁盆地陆西凹陷九佛堂组储层复杂岩性与测井曲线之间存在非线性响应关系,致使常规岩性识别方法存在多解性和不确定性。为此引入4个与储层岩性相关的复合测井参数,增强测井曲线描述复杂岩性非线性响应特征能力;结合高斯核函数和多项式... 开鲁盆地陆西凹陷九佛堂组储层复杂岩性与测井曲线之间存在非线性响应关系,致使常规岩性识别方法存在多解性和不确定性。为此引入4个与储层岩性相关的复合测井参数,增强测井曲线描述复杂岩性非线性响应特征能力;结合高斯核函数和多项式核函数各自的优良特性,构建组合核函数,改善核主元分析方法的全局识别能力;采用K-折交叉验证法确定合理的核半径参数,从而建立一套基于多复合测井参数表征的复杂岩性核主元识别方法。实际岩性数据测试分析结果表明,引入多复合测井参数后,复杂岩性数据在核主元空间具有显著的线性可分性,岩性相对位置集中、固定且区带划分标准明确,表明该岩性划分方法具有良好的稳定性,后验识别符合率92.7%以上,证明该方法在复杂岩性识别中的有效性。研究成果为开鲁盆地复杂岩性区的岩性精确识别提供了一种新的技术思路。 展开更多
关键词 核主元分析 岩性识别 复合测井参数 组合核函数 K-折交叉验证法
在线阅读 下载PDF
基于ICEEMDAN-KPCA-ICPA-LSTM的光伏发电功率预测
3
作者 姚钦才 向文国 +2 位作者 陈时熠 曹敬 郑涛 《动力工程学报》 北大核心 2025年第3期374-382,共9页
光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法... 光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法。首先,该方法通过ICEEMDAN提取气象数据中非线性信号的隐含特征;其次,采用核主成分分析降低分解后产生的冗余信息,并根据主成分贡献率大小选取模型输入参数;最后,对食肉植物算法(CPA)进行改进,构建ICPA-LSTM模型,并开展了晴天、雨天、多云和多变天气4种典型天气类型下光伏发电功率预测校验。结果表明:在不同天气情况下,所提模型的决定系数R 2均大于99%,相较于对照模型具有更好的预测性能。 展开更多
关键词 光伏发电预测 ICEEMDAN 长短期记忆网络 食肉植物算法 核主成分分析
在线阅读 下载PDF
阵列传感器气体浓度检测的改进型海鸥算法研究
4
作者 李鹏 纵彪 +2 位作者 林事力 张立豪 刘轩宇 《电子器件》 2025年第1期31-37,共7页
针对阵列传感器对二元混合气体定量检测时由于交叉敏感特性导致检测精度低的问题,提出一种改进型的海鸥算法优化核极限学习机算法。该方法首先使用核主成分分析(KPCA)对数据进行降维处理以及特征提取,选择贡献率大的主成分作为输入向量... 针对阵列传感器对二元混合气体定量检测时由于交叉敏感特性导致检测精度低的问题,提出一种改进型的海鸥算法优化核极限学习机算法。该方法首先使用核主成分分析(KPCA)对数据进行降维处理以及特征提取,选择贡献率大的主成分作为输入向量,其次改进了海鸥算法(SOA)中的非线性收敛因子B和螺旋形状系数u、v,再使用改进型海鸥算法优化核极限学习机(KELM)的关键参数,即正则化系数C和核参数σ,组成SOA-KELM定量检测模型,最终计算分析后输出结果。实验结果表明改进型海鸥算法搜索能力更好,改进型海鸥算法优化核极限学习机(SOA-KELM)的回归能力更强,检测误差更小,相关系数检测在0.9916以上,为阵列传感器气体浓度检测提供了一种新方法。 展开更多
关键词 浓度检测 核主成分分析 核极限学习机 改进型海鸥算法
在线阅读 下载PDF
基于双视角协同聚类和特征谱的雷达辐射源分类
5
作者 吴小丹 黄朝围 +2 位作者 王剑 狄慧 谷晓鹰 《上海航天(中英文)》 2025年第1期186-196,共11页
针对现代认知电子侦察方法中雷达系统部署多个信号源和雷达对抗措施而产生的复杂电磁环境,严重限制了获取有效目标识别所需的先验信息程度问题。本文提出了一种基于雷达信号的双视角协同聚类方法对辐射源进行分类,特别应用于双视角的场... 针对现代认知电子侦察方法中雷达系统部署多个信号源和雷达对抗措施而产生的复杂电磁环境,严重限制了获取有效目标识别所需的先验信息程度问题。本文提出了一种基于雷达信号的双视角协同聚类方法对辐射源进行分类,特别应用于双视角的场景下。所提方法也是从双视角的场景下,让两个信号视角获得的聚类结果之间差异,通过线性判别分析迭代地执行无监督聚类、聚类标签转移和降维,使得辐射信号排序可以在非协同环境中进行。实验验证:所提方法可以充分利用基本信号特征与脉内特征之间的差异信息,提高基于聚类的辐射源分选的精度。因此,所提方法的排序能力具有较高的实际价值。 展开更多
关键词 雷达特征谱 双视角协调聚类 雷达信号 双光谱特性 核主成分分析(KPCA)
在线阅读 下载PDF
基于不平衡数据的网络流量异常检测方法研究
6
作者 蔡登江 《电子设计工程》 2025年第1期46-50,共5页
为有效解决不平衡数据影响的问题,确保面对大规模网络流量数据异常检测的实时性,提出了基于不平衡数据的网络流量异常检测方法。通过优化SMOTE(合成少数类过采样)算法对含不平衡数据的网络流量数据进行平衡处理,将得到的数据集通过核主... 为有效解决不平衡数据影响的问题,确保面对大规模网络流量数据异常检测的实时性,提出了基于不平衡数据的网络流量异常检测方法。通过优化SMOTE(合成少数类过采样)算法对含不平衡数据的网络流量数据进行平衡处理,将得到的数据集通过核主成分分析方法实现特征提取后,输入到卷积神经网络中。通过卷积和池化过程进一步实现网络流量数据深度特征提取,依据Softmax分类层对网络流量特征进行分类,利用训练好的卷积神经网络预测模型实现不平衡数据的网络流量异常检测。通过实验验证,该方法展现出了良好的效率和稳定性。在迭代次数为40次时,实现最佳不平衡数据处理结果,能够对异常数据进行精准识别。 展开更多
关键词 不平衡数据 网络流量异常检测 优化SMOTE算法 核主成分分析 卷积神经网络 Softmax分类
在线阅读 下载PDF
A deep kernel method for lithofacies identification using conventional well logs 被引量:3
7
作者 Shao-Qun Dong Zhao-Hui Zhong +5 位作者 Xue-Hui Cui Lian-Bo Zeng Xu Yang Jian-jun Liu Yan-Ming Sun jing-Ru Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1411-1428,共18页
How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue... How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue due to abilities of handling nonlinear features by kernel functions.Deep mining of log features indicating lithofacies still needs to be improved for kernel methods.Hence,this work employs deep neural networks to enhance the kernel principal component analysis(KPCA)method and proposes a deep kernel method(DKM)for lithofacies identification using well logs.DKM includes a feature extractor and a classifier.The feature extractor consists of a series of KPCA models arranged according to residual network structure.A gradient-free optimization method is introduced to automatically optimize parameters and structure in DKM,which can avoid complex tuning of parameters in models.To test the validation of the proposed DKM for lithofacies identification,an open-sourced dataset with seven con-ventional logs(GR,CAL,AC,DEN,CNL,LLD,and LLS)and lithofacies labels from the Daniudi Gas Field in China is used.There are eight lithofacies,namely clastic rocks(pebbly,coarse,medium,and fine sand-stone,siltstone,mudstone),coal,and carbonate rocks.The comparisons between DKM and three commonly used kernel methods(KFD,SVM,MSVM)show that(1)DKM(85.7%)outperforms SVM(77%),KFD(79.5%),and MSVM(82.8%)in accuracy of lithofacies identification;(2)DKM is about twice faster than the multi-kernel method(MSVM)with good accuracy.The blind well test in Well D13 indicates that compared with the other three methods DKM improves about 24%in accuracy,35%in precision,41%in recall,and 40%in F1 score,respectively.In general,DKM is an effective method for complex lithofacies identification.This work also discussed the optimal structure and classifier for DKM.Experimental re-sults show that(m_(1),m_(2),O)is the optimal model structure and linear svM is the optimal classifier.(m_(1),m_(2),O)means there are m KPCAs,and then m2 residual units.A workflow to determine an optimal classifier in DKM for lithofacies identification is proposed,too. 展开更多
关键词 Lithofacies identification Deepkernel method Well logs Residual unit kernel principal component analysis Gradient-free optimization
在线阅读 下载PDF
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
8
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE IKPCA SeNet
在线阅读 下载PDF
基于KPCA特征量降维的风电并网系统暂态电压稳定性评估 被引量:1
9
作者 张晓英 史冬雪 +1 位作者 张琎 张鑫 《兰州理工大学学报》 CAS 北大核心 2024年第2期96-103,共8页
针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分... 针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率. 展开更多
关键词 风电并网 核主成分分析算法 降维 CPSO-BP神经网络 暂态电压稳定性评估
在线阅读 下载PDF
基于动力学模型的脱皮核桃仁干燥工艺研究 被引量:1
10
作者 胡希婷 胡建亮 +5 位作者 郜春喜 杜素军 成玉梁 郭亚辉 常巧英 钱和 《食品与发酵工业》 CAS CSCD 北大核心 2024年第18期33-41,共9页
该研究针对脱皮核桃仁干燥过程中导致的品质劣变、能耗高等问题,开展其在常压与真空干燥条件下的干燥动力学研究,通过建立干燥动力学模型比较不同干燥条件对脱皮核桃仁干燥特性的影响,以失重率、色差、酸价、过氧化值及能耗为品质指标,... 该研究针对脱皮核桃仁干燥过程中导致的品质劣变、能耗高等问题,开展其在常压与真空干燥条件下的干燥动力学研究,通过建立干燥动力学模型比较不同干燥条件对脱皮核桃仁干燥特性的影响,以失重率、色差、酸价、过氧化值及能耗为品质指标,结合主成分分析客观评价不同干燥工艺下核桃仁的品质变化差异。结果表明,干燥效率0.1 MPa真空干燥>0 MPa常压干燥>0.05 MPa真空干燥;在不同真空度和温度条件下,脱皮核桃仁中水分干燥过程的适用模型有Two-term、Wang&Singh、Page和多项式模型;真空度对脱皮核桃仁的失重率影响较小,与色差呈反比,温度、真空度对酸价影响不明显,对过氧化值影响显著,真空干燥的过氧化值较低,随着温度上升、干燥能耗显著降低,0.05 MPa真空干燥能耗最多,0.1 MPa所需能耗与常压差不多;总体上,干燥品质0.1 MPa真空干燥>0.05 MPa真空干燥>0 MPa常压干燥。综合考虑干燥效率和品质最大保留后的最佳工艺条件为50℃、0.1 MPa、12.0 h,干燥后脱皮核桃仁的酸价为(0.43±0.03)mg/g、过氧化值为(0.11±0.01)mmol/kg、干燥能耗为(3012.81±440.87)kJ/g。 展开更多
关键词 脱皮核桃仁 干燥动力学模型 酸价 过氧化值 主成分分析
在线阅读 下载PDF
基于注意力机制堆叠LSTM的多传感器信息融合刀具磨损预测 被引量:1
11
作者 成佳闻 赛希亚拉图 +1 位作者 张超勇 罗敏 《工业工程》 2024年第3期64-77,86,共15页
刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法... 刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法。对多传感器信号进行预处理,然后提取多域特征,利用核主成分分析法对其进行特征级信息融合,得到后续网络的输入。采用基于注意力机制的堆叠LSTM网络模型,使得网络能够自适应地学习数据的重要信息,在PHM2010的数据集上预测精度达到99.9%。通过与其他算法的对比试验和加入人工噪声的方法,验证了本文所提出的模型的高精度和鲁棒性。 展开更多
关键词 刀具磨损 核主成分分析(KPCA) 信息融合 注意力机制 鲁棒性
在线阅读 下载PDF
基于匹配追踪与核主成分分析的地震信号高分辨率处理方法 被引量:2
12
作者 党腾雲 徐天吉 +2 位作者 钱忠平 邹振 张红英 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期782-789,共8页
分辨率是影响地震资料解释结果的一个重要因素,地震信号分辨率低,将导致小断层、薄互层难以识别。为此,将匹配追踪算法与核主成分分析(KPCA)方法应用于地震资料处理,提出了基于匹配追踪与核主成分分析的地震信号高分辨率处理方法。首先... 分辨率是影响地震资料解释结果的一个重要因素,地震信号分辨率低,将导致小断层、薄互层难以识别。为此,将匹配追踪算法与核主成分分析(KPCA)方法应用于地震资料处理,提出了基于匹配追踪与核主成分分析的地震信号高分辨率处理方法。首先,利用匹配追踪算法通过稀疏分解不断迭代得到地震信号的最有效信息;然后,将子波替换为宽带Ricker子波进行整形处理,有效压制子波旁瓣,提高地震资料分辨率;最后,用核主成分分析方法将原始地震信号非线性映射到高维空间,在高维空间内重建地震信号,消除冗余信息。实际资料应用表明,经所提方法处理后的地震信号,波形更清晰,细节更丰富,处理结果有利于断层识别、薄层刻画,为后续地质资料解释、储层预测提供数据基础。 展开更多
关键词 匹配追踪 高分辨 子波整形 核主成分分析
在线阅读 下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别 被引量:1
13
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-pca) k-近邻算法(KNN) 分类识别
在线阅读 下载PDF
基于OVMD-KPCA-RTH-GRU的短期光伏发电功率预测 被引量:2
14
作者 王红徐 严新军 +2 位作者 夏庆成 刘佳琪 王雪虎 《水力发电》 CAS 2024年第9期98-103,共6页
针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经... 针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经网络的5个超参数进行优化;接着,应用优化后的VMD方法分解原始数据,以减少光伏数据的波动性和随机性;然后,采用KPCA方法降低数据维度,消除冗余;最后,利用经RTH优化的GRU神经网络模型进行时序建模。通过分析新疆某光伏电站的历史发电数据,并与GRNN、LSTM、GRU以及OVMD-GRU、OVMD-KPCA-GRU模型相比较,本模型的拟合优度高达98.96%,显示出更高的预测精度。 展开更多
关键词 变分模态分解 核主成分分析 红尾鵟优化算法 门控循环神经网络 光伏功率预测
在线阅读 下载PDF
基于参数优化多核支持向量机的光伏功率预测算法 被引量:1
15
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 多核支持向量机 灰狼优化算法
在线阅读 下载PDF
基于多域特征与信息融合的叶片裂纹故障诊断 被引量:1
16
作者 马天池 沈君贤 +1 位作者 宋狄 许飞云 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1567-1573,共7页
针对离心风机叶片裂纹故障诊断问题,提出了一种基于多域特征与信息融合的叶片裂纹故障特征提取方法.首先,在时域、频域和时频域特征的基础上,针对叶片裂纹故障信号的幅值调制特点,采用一系列循环域特征,构建多域特征集.其次,使用Laplac... 针对离心风机叶片裂纹故障诊断问题,提出了一种基于多域特征与信息融合的叶片裂纹故障特征提取方法.首先,在时域、频域和时频域特征的基础上,针对叶片裂纹故障信号的幅值调制特点,采用一系列循环域特征,构建多域特征集.其次,使用Laplacian分数、随机森林、ReliefF算法、互信息和信息增益等多种特征选择方法对多域特征集的所有特征进行评分;然后,提出了改进的Dempster-Shafer证据理论方法,并融合多准则下的特征分数向量,得到敏感特征子集;最后,提出了基于蜉蝣算法优化的核主成分分析方法,充分利用多传感器信息,完成叶片裂纹故障敏感特征的提取,实现叶片的裂纹故障诊断.结果表明:所提方法的平均测试准确率达到99.70%,优于其他对比方法,可用于叶片裂纹的故障诊断. 展开更多
关键词 叶片裂纹 故障诊断 循环域特征 信息融合 DEMPSTER-SHAFER证据理论 核主成分分析
在线阅读 下载PDF
基于改进EMD-小波包的爆破振动信号降噪方法研究 被引量:2
17
作者 闫鹏 张云鹏 +2 位作者 侯善营 张为为 杨曦 《振动与冲击》 EI CSCD 北大核心 2024年第11期264-271,287,共9页
针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚... 针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚类特性以及小波包的降噪优势,不仅可以消除EMD的模态混叠,也具有良好的降噪效果。研究结果表明:与自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis, CEEMDAN)和EMD方法相比,在模拟信号降噪试验中,改进EMD-小波包方法的信噪比(7.9 dB)最大,均方根误差(2.96)最小。在实测爆破振动信号降噪中,改进EMD-小波包方法降噪后的信号与原始信号相关系数最大为0.91。改进EMD-小波包和CEEMDAN方法的降噪效果相对理想,且改进EMD-小波包方法对10~60 Hz低频信号能量保存效果较好,对60 Hz以上中高频噪声的滤除效果最好。 展开更多
关键词 爆破振动信号 经验模态分解(EMD) 核主成分分析(KPCA) K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于双层自适应集成残差主成分分析的复杂非线性过程监测
18
作者 唐徐佳 卢伟鹏 颜学峰 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期88-96,共9页
多元统计监测方法常使用正常数据选取特征,而现实过程中,不同的故障将影响不同的特征,并且这些特征可能随着时间和控制系统的作用而变化。当故障发生并随时间变化时,要想获得更好的故障检测能力,就需要聚集有效的故障敏感特征。本文提... 多元统计监测方法常使用正常数据选取特征,而现实过程中,不同的故障将影响不同的特征,并且这些特征可能随着时间和控制系统的作用而变化。当故障发生并随时间变化时,要想获得更好的故障检测能力,就需要聚集有效的故障敏感特征。本文提出了一种双层自适应集成残差主成分分析(AERPCA)模型,其子模型包含不同的特征,并突出地呈现一个或多个相关故障。首先,根据正常数据计算主成分分析(PCA)特征,利用不同特征构建线性子模型和相应的残差空间。考虑到残差空间的非线性特性及有效特征更为分散,采用核PCA(KPCA)提取不同的特征并组成同一残差空间下不同KPCA子模型。然后,利用贝叶斯方法获取集成KPCA子模型,完成各残差空间的划分和集成。最后,在主空间中获得多个线性子模型以及在残差空间中获得多个集成的非线性子模型后,利用滑动窗口确定当前时刻监控效果最好的模型。采用田纳西-伊士曼过程验证了AERPCA的有效性。 展开更多
关键词 集成学习 自适应过程 核主成分分析 非线性过程监测 故障诊断
在线阅读 下载PDF
基于核主成分分析与长短时记忆网络的水电机组监测预警
19
作者 王勇飞 李晓飞 +3 位作者 孙雨欣 张健 郭鹏程 王仁本 《振动与冲击》 EI CSCD 北大核心 2024年第24期287-294,共8页
水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动... 水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动信号数据融合研究,通过KPCA方法去除了多通道信号间冗余,实现了原始数据的压缩表征,并获得了机组在稳态运行工况的T2(Hotelling’s Fsquared)和SPE(square prediction error)控制限,将其作为预警阈值对融合后信号进行异常状态识别。以LSTM为基础构建了时序预测模型,结合异常状态识别结果实现了水电机组状态预警功能。研究通过案例实施验证了所提方法的有效性,并与KPCA-RNN和KPCA-Informer等模型进行了对比,所提出KPCA-LSTM模型预测结果的R2系数大于0.97,预测偏差处于极低水平,性能优于对比模型。 展开更多
关键词 水电机组 长短时记忆网络(LSTM) 核主成分分析(KPCA) 预警阈值
在线阅读 下载PDF
考虑人因-环境因素的山区公路警觉水平量化模型
20
作者 刘通 胡红 +2 位作者 单珏 刘唐志 刘星良 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第7期44-51,69,共9页
为描述山区公路驾驶者的警觉状态及水平,综合考虑人因-环境因素,提出了一种山区公路警觉水平量化方法。通过分析驾驶者的眼动及行为数据来确定初始观测指标,基于核主成分分析法对多源数据进行降维,对降维后的主成分使用K-means聚类方法... 为描述山区公路驾驶者的警觉状态及水平,综合考虑人因-环境因素,提出了一种山区公路警觉水平量化方法。通过分析驾驶者的眼动及行为数据来确定初始观测指标,基于核主成分分析法对多源数据进行降维,对降维后的主成分使用K-means聚类方法划分高低警觉水平;以低警觉水平样本概率为目标变量,通过筛选人因-环境因素得到了警觉水平量化因子;基于评分卡方法建立了山区公路警觉水平量化模型,并对模型进行了实例验证。研究结果表明:基于人因-环境因素的山区公路警觉水平量化模型的AUC值为0.907,KS值为71.86%,模型效果较好,能为山区公路驾驶者警觉水平动态评价及安全配套设施建设提供参考依据。 展开更多
关键词 交通工程 警觉水平 山区公路 评分卡模型 实车试验 核主成分分析
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部