期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Kernel method-based fuzzy clustering algorithm 被引量:2
1
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
2
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
3
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
4
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
基于改进FCM的冲压件缺陷图像分割算法
5
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊C均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
在线阅读 下载PDF
基于核方法的模糊聚类算法 被引量:75
6
作者 伍忠东 高新波 谢维信 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第4期533-537,共5页
将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工... 将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工和实际数据的实验结果表明,与模糊C 均值算法相比,模糊核C 均值算法在多种数据结构条件下可以有效地进行聚类. 展开更多
关键词 聚类分析 模糊C-均值 核方法 无监督学习
在线阅读 下载PDF
一种基于人工免疫的模糊核聚类算法 被引量:9
7
作者 蒋全胜 贾民平 +1 位作者 胡建中 许飞云 《中国机械工程》 EI CAS CSCD 北大核心 2008年第5期594-597,共4页
针对模糊聚类及核聚类算法存在的初值敏感及易陷入局部极值点的问题,提出了一种基于人工免疫的模糊核聚类新算法。新算法将基于核的模糊聚类方法与人工免疫进化算法相结合,借鉴生物免疫系统中免疫细胞克隆和记忆、亲合力成熟等机理,采... 针对模糊聚类及核聚类算法存在的初值敏感及易陷入局部极值点的问题,提出了一种基于人工免疫的模糊核聚类新算法。新算法将基于核的模糊聚类方法与人工免疫进化算法相结合,借鉴生物免疫系统中免疫细胞克隆和记忆、亲合力成熟等机理,采用克隆选择机制对抗体进行逐代克隆、高频变异及抑制操作。相对于模糊聚类及核聚类算法,新算法能快速地获得全局最优解。仿真数据、IRIS数据和空气压缩机运行数据测试结果证明了新算法的可行性和有效性。 展开更多
关键词 模糊聚类 人工免疫 克隆选择算法 核方法
在线阅读 下载PDF
基于KFCM和改进分水岭算法的猪肉背最长肌分割技术 被引量:14
8
作者 伍学千 廖宜涛 +1 位作者 樊玉霞 成芳 《农业机械学报》 EI CAS CSCD 北大核心 2010年第1期172-176,共5页
提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进... 提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进的分水岭算法分割出背最长肌区域。利用该算法对采集的60幅猪肉眼肌图像进行处理,分割正确率为86.67%;与传统的形态学算法相比,该算法能真实、完整地恢复出背最长肌区域。结果表明:该算法能有效地分割出猪肉眼肌图像中的背最长肌区域,与改进前分水岭算法相比,能避免背最长肌区域出现欠分割。 展开更多
关键词 无损检测 图像分割 猪肉 背最长肌 核模糊C均值聚类 分水岭算法
在线阅读 下载PDF
基于样本密度KFCM新算法及其在故障诊断的应用 被引量:14
9
作者 陶新民 徐晶 +1 位作者 付强 刘兴丽 《振动与冲击》 EI CSCD 北大核心 2009年第8期61-64,83,共5页
针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响... 针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响,使样本的聚类效果更好,同时还可以分析各样本对聚类的贡献程度。此外利用最大类间方差法对样本密度进行分割,得到各类中心点并以此作为KFCM算法的初始聚类中心,克服了传统算法对初始值敏感的不足。对各种实际数据集的测试结果均显示出新算法的优良性能。最后利用新算法对轴承故障进行诊断,试验结果表明新算法的诊断率优于传统的聚类算法。 展开更多
关键词 核模糊聚类 样本密度 最大类间方差法 故障诊断
在线阅读 下载PDF
基于点密度加权核模糊聚类的变压器故障诊断方法 被引量:15
10
作者 刘卫华 廖瑞金 杨丽君 《电力自动化设备》 EI CSCD 北大核心 2012年第6期66-69,79,共5页
变压器油中溶解气体分析(DGA)是电力变压器绝缘诊断的重要方法。针对模糊C-均值聚类算法(FCM)用于DGA时存在可分性差和等趋势划分等问题,用样本点分布密度大小作为权值,结合核函数的增强可分性,提出点密度加权模糊核C-均值聚类算法,并... 变压器油中溶解气体分析(DGA)是电力变压器绝缘诊断的重要方法。针对模糊C-均值聚类算法(FCM)用于DGA时存在可分性差和等趋势划分等问题,用样本点分布密度大小作为权值,结合核函数的增强可分性,提出点密度加权模糊核C-均值聚类算法,并将其用于变压器DGA数据分析,从而实现变压器的故障诊断。实例分析结果表明该算法能快速、有效地对样本进行聚类,且特别适用于含有噪声样本的环境。 展开更多
关键词 点密度 核函数 FCM 变压器 DGA 故障诊断 模糊理论 聚类算法
在线阅读 下载PDF
基于粒子群优化的直觉模糊核匹配追踪算法 被引量:10
11
作者 余晓东 雷英杰 +1 位作者 岳韶华 何颖 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1308-1314,共7页
针对现有直觉模糊核匹配追踪算法采用贪婪算法搜索最优基函数而导致学习时间过长的问题,汲取了粒子群优化算法全局搜索能力强、收敛速度快的优势对最优基函数的搜索过程进行优化,提出了一种基于粒子群优化的直觉模糊核匹配追踪算法,并... 针对现有直觉模糊核匹配追踪算法采用贪婪算法搜索最优基函数而导致学习时间过长的问题,汲取了粒子群优化算法全局搜索能力强、收敛速度快的优势对最优基函数的搜索过程进行优化,提出了一种基于粒子群优化的直觉模糊核匹配追踪算法,并将该算法应用于时效性要求更高的空天目标识别领域.实验结果表明,与传统方法相比,本文方法在识别率相当的情况下有效缩短一次匹配追踪时间,计算效率明显提高,且所得模型具有稀疏性好,泛化能力高等优点,特别适用于兼顾识别率和实时性的应用领域. 展开更多
关键词 直觉模糊集 核匹配追踪 粒子群优化 贪婪算法
在线阅读 下载PDF
基于FKCM的球磨机系统T-S模糊建模方法 被引量:5
12
作者 王恒 贾民平 +2 位作者 许飞云 陈左亮 谢超 《系统仿真学报》 CAS CSCD 北大核心 2009年第2期530-533,共4页
针对传统的描述热工过程动态数学模型的方法难以建立非线性模型的缺点,提出了一种基于模糊核聚类的球磨机系统T-S模糊建模算法。该算法首先通过灰色关系法确定模型输入变量,利用FKCM聚类算法对输入空间进行模糊划分,确定T-S模型的前件... 针对传统的描述热工过程动态数学模型的方法难以建立非线性模型的缺点,提出了一种基于模糊核聚类的球磨机系统T-S模糊建模算法。该算法首先通过灰色关系法确定模型输入变量,利用FKCM聚类算法对输入空间进行模糊划分,确定T-S模型的前件结构和前件参数;进而利用最小二乘算法确定模糊规则的后件参数。最后,利用数字仿真数据对球磨机系统进行模糊建模,建模结果表明该算法简单﹑实用,模型能够精确地描述过程的非线性。 展开更多
关键词 球磨机 T-S模糊模型 模糊核聚类 灰色关联度分析
在线阅读 下载PDF
改进的基于核函数的模糊聚类算法 被引量:4
13
作者 孔攀 邓辉文 +1 位作者 江欢 黄艳艳 《计算机应用》 CSCD 北大核心 2008年第9期2338-2340,共3页
针对传统模糊核聚类算法没有考虑各维特征对聚类的不同贡献程度,以及易陷入局部最优等缺点,提出一种改进的模糊核聚类算法。该算法构造了一个简单有效的适应度函数,结合遗传算法全局搜索的优点,避免算法陷入局部最优。还为各维特征引入... 针对传统模糊核聚类算法没有考虑各维特征对聚类的不同贡献程度,以及易陷入局部最优等缺点,提出一种改进的模糊核聚类算法。该算法构造了一个简单有效的适应度函数,结合遗传算法全局搜索的优点,避免算法陷入局部最优。还为各维特征引入一个权系数,并利用ReliefF算法为特征加权。该算法比传统模糊核聚类算法有较大改进,实验结果表明了其有效性。 展开更多
关键词 模糊聚类 核函数 遗传算法 特征加权
在线阅读 下载PDF
动态加权模糊核聚类算法 被引量:5
14
作者 李颖 李传龙 +1 位作者 马龙 于水明 《计算机工程与设计》 CSCD 北大核心 2009年第24期5584-5587,共4页
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法。该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数... 为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法。该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据。仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性。 展开更多
关键词 模糊聚类 非团状数据 加权模糊核聚类 核函数 非线性划分
在线阅读 下载PDF
基于差分进化算法的模糊核聚类算法及其在故障诊断中的应用 被引量:4
15
作者 张新萍 张孝远 刘杰 《电力系统保护与控制》 EI CSCD 北大核心 2014年第17期102-106,共5页
针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法... 针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法进行数值试验,同时应用在电机轴承的故障诊断中,取得了不错的效果,验证了方法的可行性。 展开更多
关键词 模糊聚类 核函数 差分进化算法 故障诊断
在线阅读 下载PDF
汽轮机热耗率多模型建模方法研究 被引量:7
16
作者 牛培峰 刘超 +3 位作者 李国强 马云飞 陈贵林 张先臣 《计量学报》 CSCD 北大核心 2015年第3期251-255,共5页
针对汽轮机热耗率难以准确计算的问题,提出了核模糊C均值与混合蛙跳算法优化最小二乘支持向量机(LS—SVM)的汽轮机热耗率多模型建模方法,用来计算不同工况下的热耗率。该方法利用核模糊C均值算法对热耗率数据聚类,采用5折交叉验证... 针对汽轮机热耗率难以准确计算的问题,提出了核模糊C均值与混合蛙跳算法优化最小二乘支持向量机(LS—SVM)的汽轮机热耗率多模型建模方法,用来计算不同工况下的热耗率。该方法利用核模糊C均值算法对热耗率数据聚类,采用5折交叉验证平均误差作为LS—SVM参数选择的适应度值,利用混合蛙跳算法优化参数并建立局部模型,采用开关切换得到模型输出,以此实现热耗率的多模型建模。与单一的LS—SVM模型和BP网络热耗率预测模型比较,结果表明该多模型方法有更高的预测精确和更好的泛化能力,能更准确地计算汽轮机热耗率。 展开更多
关键词 计量学 汽轮机热耗率 混合蛙跳算法 多模型建模 最小二乘支持向量机 核模糊c均值
在线阅读 下载PDF
基于核的模糊聚类算法 被引量:5
17
作者 蔡卫菊 张颖超 《计算机工程与应用》 CSCD 北大核心 2006年第18期173-175,共3页
在聚类分析中,模糊c-均值算法是应用最广泛的聚类算法之一,针对该算法对初始化敏感,容易陷入局部极小点的缺点,论文提出了一种基于核的模糊聚类算法。在算法中将核方法与模糊可能性算法相结合,将模糊c-均值算法结果作为初始中心,放松了... 在聚类分析中,模糊c-均值算法是应用最广泛的聚类算法之一,针对该算法对初始化敏感,容易陷入局部极小点的缺点,论文提出了一种基于核的模糊聚类算法。在算法中将核方法与模糊可能性算法相结合,将模糊c-均值算法结果作为初始中心,放松了对隶属度归一化的条件,对噪声有更好的处理能力。IRIS数据和人造数据的实验结果表明该算法的有效性。 展开更多
关键词 模糊聚类 核方法模糊 C-均值算法 可能c-均值算法
在线阅读 下载PDF
基于模糊核聚类和支持向量机的鲁棒协同推荐算法 被引量:7
18
作者 伊华伟 张付志 巢进波 《电子与信息学报》 EI CSCD 北大核心 2017年第8期1942-1949,共8页
该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后... 该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后,利用支持向量机分类器对含有攻击概貌的聚类进行分类,实现攻击概貌的第2阶段检测。最后,基于攻击概貌检测结果,通过构造指示函数排除攻击概貌在推荐过程中产生的影响,并引入矩阵分解技术设计相应的鲁棒协同推荐算法。实验结果表明,与现有的基于矩阵分解模型的推荐算法相比,所提算法不但具有很好的鲁棒性,而且准确性也有提高。 展开更多
关键词 鲁棒推荐算法 托攻击 矩阵分解 模糊核聚类 支持向量机
在线阅读 下载PDF
基于改进自适应粒子群算法的T-S模型辨识 被引量:3
19
作者 丁学明 张久忠 沈业茂 《控制工程》 CSCD 北大核心 2011年第6期952-955,共4页
提出基于改进自适应粒子群算法(Improved Self-adaptation Particle Swarm Optimiza-tion,PSO)的T-S模糊模型辨识方法。首先,利用核函数的模糊聚类算法划分数据空间,尽可能少地提取模糊规则,并消除孤立点、噪声点数据等的不利影响;其次... 提出基于改进自适应粒子群算法(Improved Self-adaptation Particle Swarm Optimiza-tion,PSO)的T-S模糊模型辨识方法。首先,利用核函数的模糊聚类算法划分数据空间,尽可能少地提取模糊规则,并消除孤立点、噪声点数据等的不利影响;其次,基于ISPSO算法进行参数辨识,将待辨识的参数划分为若干粒子,自适应更新飞行速度,动态修改惯性权因子,惯性权因子呈非线性动态变化,不仅可以克服PSO算法陷入局部最优的早熟,失去多样性,而且可以提高粒子在全局最优位置绕行时的稳定性。提出的方法使得T-S模型辨识达到较高的辨识精度。仿真实例和比较分析证明了该算法的有效性。 展开更多
关键词 T-S模型 核函数 模糊聚类 PSO算法
在线阅读 下载PDF
优化KPCA特征提取下的FCM算法研究 被引量:2
20
作者 蔡静颖 张永 +1 位作者 张凤梅 谢福鼎 《计算机工程与应用》 CSCD 北大核心 2009年第32期38-40,共3页
利用核函数主元分析(KPCA)方法对大样本、高维数据进行特征提取预处理,并结合文化算法(CA)选择最优或接近最优的核函数,将其用于模糊C均值(FCM)聚类中,不但有效地提取了样本的非线性信息,而且使样本维数得到约简。实验表明该方法具有较... 利用核函数主元分析(KPCA)方法对大样本、高维数据进行特征提取预处理,并结合文化算法(CA)选择最优或接近最优的核函数,将其用于模糊C均值(FCM)聚类中,不但有效地提取了样本的非线性信息,而且使样本维数得到约简。实验表明该方法具有较好的聚类效果和更少的训练时间。 展开更多
关键词 核函数主元分析 文化算法 模糊聚类
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部