期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
1
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm kernel fuzzy c-means algorithm clustering evaluation
在线阅读 下载PDF
基于KFCM-MNN并联式混合动力汽车能量管理策略 被引量:2
2
作者 孔慧芳 朱翔 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第4期485-489,共5页
为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法... 为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法对全局最优解数据集合按照车辆运行模式作聚类划分,针对每一个聚类建立局部神经网络。训练后的MNN模型结构根据实时工况,将多个局部神经网络的输出联结作为能量管理策略的输出,以实现发动机和电机转矩的实时优化分配。仿真结果表明,基于KFCM-MNN的能量管理策略,具有对动态规划能量管理策略很好的学习模拟能力,是一种准最优的控制策略。 展开更多
关键词 并联式混合动力汽车 动态规划 多神经网络(MNN) 核模糊c聚类(kfcm) 能量管理策略
在线阅读 下载PDF
基于核模糊C均值指纹库管理的WIFI室内定位方法 被引量:12
3
作者 杨慧琳 黄智刚 +1 位作者 刘久文 杜元锋 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1126-1133,共8页
针对目前已有的基于指纹的WIFI室内定位指纹库的管理方法对野值和噪声的敏感性,提出一种基于核模糊C均值聚类的指纹库管理的室内定位方法.利用核函数将指纹库从低维空间映射到高维空间并结合模糊聚类方法在高维空间进行指纹库管理,并在... 针对目前已有的基于指纹的WIFI室内定位指纹库的管理方法对野值和噪声的敏感性,提出一种基于核模糊C均值聚类的指纹库管理的室内定位方法.利用核函数将指纹库从低维空间映射到高维空间并结合模糊聚类方法在高维空间进行指纹库管理,并在管理后的指纹库上进行定位匹配.将指纹库映射到高维空间可以使指纹库中的数据线性可分,从而实现更好的聚类.核模糊C均值(KFCM-Ⅱ)的聚类鲁棒性能够降低聚类对噪声和野值的敏感性,从而保证系统的鲁棒性.在实测数据的实验中,将所提出的方法与基于K均值聚类和基于模糊C均值聚类的室内定位方法进行对比,实验结果表明,所提出的方法相较于K均值方法和模糊C均值方法聚类准确度分别提高了14.20%和10.58%,定位精度分别提高了26.98%和20.43%. 展开更多
关键词 WIFI室内定位 指纹 核模糊C均值(kfcm)聚类 鲁棒性 K最近邻居法
在线阅读 下载PDF
核聚类集成失衡数据SVM算法 被引量:5
4
作者 陶新民 郝思媛 +1 位作者 张冬雪 徐鹏 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第3期381-388,共8页
针对传统SVM算法在失衡数据集下的分类性能不理想的问题,提出一种基于核聚类集成SVM算法.该算法首先在核空间中对多数类样本集进行聚类,然后随机选择出具有代表意义的聚类信息点,实现在减少多数类样本数的同时将分类界面向多数类样本方... 针对传统SVM算法在失衡数据集下的分类性能不理想的问题,提出一种基于核聚类集成SVM算法.该算法首先在核空间中对多数类样本集进行聚类,然后随机选择出具有代表意义的聚类信息点,实现在减少多数类样本数的同时将分类界面向多数类样本方向偏移.并利用AdaBoost集成手段对基于核聚类的欠取样SVM算法进行集成,最终提高SVM算法在失衡数据下的泛化性能.将提出的算法同其他失衡数据预处理集成方法进行比较,实验结果表明该算法能够有效提高SVM算法在失衡数据中少数类的分类性能,且总体分类性能及运行效率都有明显提高. 展开更多
关键词 失衡数据 SVM算法 ADABOOST 核聚类 欠取样
在线阅读 下载PDF
局部均值分解和形态谱的液压泵故障诊断方法 被引量:7
5
作者 孙兆丹 郑直 +1 位作者 张何 姜万录 《噪声与振动控制》 CSCD 2020年第2期96-101,共6页
针对液压泵故障诊断问题,提出一种基于局部均值分解(LMD)、形态谱和核模糊C均值聚类相结合的方法。首先,用LMD分解液压泵振动信号,得到具有物理意义的若干个模态分量(PFs);其次,选取含有特征信息丰富的3个PFs为数据源,采用基于峰度值、... 针对液压泵故障诊断问题,提出一种基于局部均值分解(LMD)、形态谱和核模糊C均值聚类相结合的方法。首先,用LMD分解液压泵振动信号,得到具有物理意义的若干个模态分量(PFs);其次,选取含有特征信息丰富的3个PFs为数据源,采用基于峰度值、能量和均方差的评价方法,从这3个PFs中提取出各个尺度上的形态谱的3个平均值,将其组成一个向量;最后,采用核模糊C均值聚类方法(KFCM)对不同工况下所有样本进行聚类分析,对液压泵故障进行诊断。此外,将信号采用经验模态方法(EMD)分解、模糊C均值聚类方法(FCM)分析,结果表明LMD和KFCM分别优于EMD和FCM;该方法诊断精度高,是液压泵故障诊断的有效方法。 展开更多
关键词 故障诊断 局部均值分解 形态谱 核模糊C均值聚类 液压泵
在线阅读 下载PDF
基于钻进参数聚类的含煤地层岩性模糊识别 被引量:30
6
作者 张幼振 张宁 +1 位作者 邵俊杰 钟自成 《煤炭学报》 EI CAS CSCD 北大核心 2019年第8期2328-2335,共8页
通过钻进参数进行煤矿巷道围岩特征描述可为煤矿安全绿色开采提供地质信息保障。针对煤矿井下坑道钻探中随钻地层岩性识别难度大、精度低的问题,提出了一种基于钻进参数核模糊C均值聚类(Kernel Fuzzy C-means,KFCM)算法的含煤地层岩性... 通过钻进参数进行煤矿巷道围岩特征描述可为煤矿安全绿色开采提供地质信息保障。针对煤矿井下坑道钻探中随钻地层岩性识别难度大、精度低的问题,提出了一种基于钻进参数核模糊C均值聚类(Kernel Fuzzy C-means,KFCM)算法的含煤地层岩性模糊识别方法。结合钻进试验台上开展的模拟岩样钻进试验,获得了包括钻速、转速和钻压等敏感钻进参数的训练样本,利用KFCM算法对获取的钻进参数训练样本进行学习,构造钻进参数样本空间并映射到高维空间进行聚类处理。建立了以典型含煤地层分类为目标的聚类模型,采用高斯核函数分别确定了软弱夹层、煤层和泥岩层的分布结构以及对应的聚类中心。其中,对比线性核函数,高斯核函数在垂向上的分类效果符合沉积岩构造的特征,且聚类时间节约了7.2%。进一步基于钻进参数的聚类结果,将钻速作为衡量各类岩石钻进性能的关键参数,通过分析钻进参数数据集的变化规律,建立了钻速与转速、钻压幂函数表达形式的地层岩性预测模型,采用数据插值拟合方法完成了典型软弱夹层、煤层和泥岩层的空间划分。并应用模糊数学方法通过构建钻速的分段三角形隶属度函数,得出样本地层钻速对典型含煤地层钻速的隶属度公式,根据隶属度公式将地层岩性划分为5个级别,实现了对样本地层岩性的模糊识别。在实钻试验中,对提出的模糊识别方法的有效性进行了验证。结果表明,该方法能够在PDC锚杆钻头回转钻进条件下快速识别典型含煤地层岩性,识别的正确率为92%,研究结果为实现煤矿井下巷道隐蔽致灾因素动态智能探测提供了借鉴。 展开更多
关键词 坑道钻探 钻进参数 含煤地层 核模糊C均值聚类 模糊识别 实钻试验
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部