期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于监督核熵的空压机阀片故障诊断优化 被引量:1
1
作者 赵凯 王永坚 +1 位作者 蔡杭溪 李劼 《船海工程》 北大核心 2025年第1期13-19,共7页
空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将... 空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将处理后的特征信息输入到经过贝叶斯优化方法优化超参数的支持向量机模型中,以评估其在空压机状态识别方面的性能。经实验验证可知,该方法能够有效提升支持向量机模型的识别准确率,准确率可达98.47%。 展开更多
关键词 船用空压机 阀片故障诊断 监督核熵成分分析 贝叶斯优化 支持向量机
在线阅读 下载PDF
基于KPCA-SO-KELM的抗蛇行减振器故障诊断
2
作者 岑潮宇 代亮成 +1 位作者 池茂儒 赵明花 《科学技术与工程》 北大核心 2025年第11期4551-4558,共8页
针对列车运行过程中的振动信号是复杂非线性的,并且单一通道的信号存在着信息不完全的问题,提出了一种车体和转向架上多个通道信号融合的抗蛇行减振器故障诊断的方法。首先,对列车多个通道的信号进行自适应噪声完备集合经验模态分解(com... 针对列车运行过程中的振动信号是复杂非线性的,并且单一通道的信号存在着信息不完全的问题,提出了一种车体和转向架上多个通道信号融合的抗蛇行减振器故障诊断的方法。首先,对列车多个通道的信号进行自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),提取分解后的本征模态函数(intrinsic mode function, IMF)精细复合多尺度散布熵(refined composite multiscale dispersion entropy, RCMDE)组成特征集;其次,用核主成分分析法(kernel principal component analysis, KPCA)对提取出的特征集进行降维;最后,将最优特征子集输入到蛇优化的核极限学习机(snake optimized kernel extreme learning machine, SO-KELM)中来诊断抗蛇行减振器故障类型。试验结果表明,经过核主成分分析法优选过后的多通道融合特征集能够准确反映抗蛇行减振器不同故障类型信号特征,实现了抗蛇行减振器的故障诊断,并将蛇优化核极限学习机与其他模型对比验证了该方法的优越性。 展开更多
关键词 抗蛇行减振器 精细复合多尺度散布熵 故障诊断 蛇优化 核主成分分析
在线阅读 下载PDF
基于K-I-ELM多模型集成的分布式光伏出力短期预测方法 被引量:1
3
作者 江卓翰 周胜瑜 +2 位作者 何禹清 周任军 孙辰昊 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期146-152,共7页
为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统... 为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统出力的预测难度。为此,首先构建核主成分分析(kernel principle component analysis,KPCA)模型,通过核函数在特征空间中依据不同特征的有效信息蕴含度提取主成分;然后采用信息熵(information entropy,IE)模型,根据各主成分信息负载度量加权系数,综合求解相应作用权重;最后依据特征评估结果,针对性设置极限学习机(extreme learning machine,ELM)网络参数,降低预测不确定度。最终整合多类别数据挖掘模型,构建K-I-ELM预测方法,在复杂数据环境下实施光伏出力短期预测。基于某实际台区光伏发电数据进行案例分析,论证所提方法针对不同数据环境的适应性及较高的预测精度。 展开更多
关键词 信息熵 核主成分分析 极限学习机 短期预测 光伏出力
在线阅读 下载PDF
基于GA-IPSO-KPCA和变权组合模型的电动汽车充电方法 被引量:1
4
作者 傅莹颖 葛泉波 +1 位作者 李春喜 崔向科 《控制工程》 CSCD 北大核心 2024年第4期712-721,共10页
需求电压和需求电流是充电桩对电动汽车安全充电的重要依据。然而,随着电池的老化,电池管理系统的数据可能出现错误,使得电动汽车在充电时存在安全隐患。针对该问题,建立最小二乘支持向量机和深度置信网络的组合预测模型,提出一种基于... 需求电压和需求电流是充电桩对电动汽车安全充电的重要依据。然而,随着电池的老化,电池管理系统的数据可能出现错误,使得电动汽车在充电时存在安全隐患。针对该问题,建立最小二乘支持向量机和深度置信网络的组合预测模型,提出一种基于变权组合模型的电动汽车充电方法。首先,针对数据掉线缺失问题,使用K均值和反距离加权方法对数据进行插值;然后,使用改进的混合核主成分分析算法对完整数据进行主成分提取,并使用改进粒子群优化算法自动确定混合核函数的权重。基于真实电动汽车数据的实验结果表明,所提方法能够准确地预测需求电压和需求电流,具有实际意义和可行性。 展开更多
关键词 充电安全 组合预测 粒子群优化算法 核主成分分析 深度置信网络 最小相对熵
在线阅读 下载PDF
基于KECA和维纳过程的风电齿轮箱剩余寿命预测
5
作者 许之胜 刘长良 徐健 《中国测试》 CAS 北大核心 2024年第12期156-162,168,共8页
齿轮箱是风电机组的关键设备,其性能一旦退化至失效状态,会造成严重的安全隐患。为动态掌握齿轮箱的退化过程,提出一种基于核熵成分分析与维纳过程的剩余寿命预测方法。数据预处理时,使用随机森林算法剔除离群点和异常值,并通过皮尔逊... 齿轮箱是风电机组的关键设备,其性能一旦退化至失效状态,会造成严重的安全隐患。为动态掌握齿轮箱的退化过程,提出一种基于核熵成分分析与维纳过程的剩余寿命预测方法。数据预处理时,使用随机森林算法剔除离群点和异常值,并通过皮尔逊算法选取与齿轮箱退化相关度高的多个特征。通过核熵成分分析方法在高维空间中进行主元分析,选取信息保有量较大的主元,达到数据降维的目的。随后,使用维纳过程对风电齿轮箱的剩余寿命进行预测。以河北某风场实际数据为例,结果表明:分别使用3000、4000、5000个点进行预测时,提出方法的预测误差分别为12.72%、10.52%、6.05%,显著优于对比方法。 展开更多
关键词 风电齿轮箱 剩余寿命预测 核熵成分分析 维纳过程 随机森林算法
在线阅读 下载PDF
基于角结构统计量的MKECA间歇过程故障监测 被引量:9
6
作者 王普 李春蕾 +2 位作者 高学金 常鹏 齐咏生 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期174-180,共7页
针对间歇过程复杂非线性的特点,提出一种基于角结构统计量的多向核熵成分分析(MKECA)间歇过程监测方法。该方法首先将间歇过程数据进行标准化预处理,然后采用KECA提取间歇过程数据的主成分矩阵。研究表明,经过KECA投影后的主成分数据具... 针对间歇过程复杂非线性的特点,提出一种基于角结构统计量的多向核熵成分分析(MKECA)间歇过程监测方法。该方法首先将间歇过程数据进行标准化预处理,然后采用KECA提取间歇过程数据的主成分矩阵。研究表明,经过KECA投影后的主成分数据具有良好的角结构,因此利用主成分矩阵构造基于角结构的统计量,并且采用核密度估计算法计算其控制限。与传统的统计量相比,无需假设过程变量服从高斯分布。最后通过青霉素发酵的仿真平台和大肠杆菌实际生产过程验证,实验结果表明,相比于传统MKPCA方法,能够有效利用主成分的结构信息,明显降低了故障的误报率、漏报率。 展开更多
关键词 核熵成分分析 角结构统计量 核密度估计 故障监测
在线阅读 下载PDF
基于集成熵KPCA的复杂机电系统状态监测方法 被引量:10
7
作者 高智勇 梁银林 +1 位作者 高建民 姜洪权 《计算机集成制造系统》 EI CSCD 北大核心 2015年第5期1327-1333,共7页
针对传统KPCA方法的模型参数选取对经验知识依赖程度过高、容易造成漏报和误报的缺点,提出一种基于集成熵核主成分分析的状态监测方法。该方法将传统的KPCA与信息熵结合,在高维空间用信息测度确定模型参数,用Renyi熵贡献提取核主成分,... 针对传统KPCA方法的模型参数选取对经验知识依赖程度过高、容易造成漏报和误报的缺点,提出一种基于集成熵核主成分分析的状态监测方法。该方法将传统的KPCA与信息熵结合,在高维空间用信息测度确定模型参数,用Renyi熵贡献提取核主成分,通过构造综合统计量进行状态监测。在TE过程和某企业的压缩机组系统上的仿真研究表明,所提方法较传统KPCA有更好的非线性数据处理能力和更高的故障或异常检测精度。 展开更多
关键词 状态监测 核主成分分析 RENYI熵 特征提取
在线阅读 下载PDF
基于上下文信息和核熵成分分析的目标分类算法 被引量:7
8
作者 潘泓 朱亚平 +1 位作者 夏思宇 金立左 《电子学报》 EI CAS CSCD 北大核心 2016年第3期580-586,共7页
结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分... 结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分量中选出最能代表目标几何结构信息的特征分量,将其投影到这些特征分量张成的子空间上可得到降维CKD特征.在Caltech-101和CIFAR-10的测试结果表明,CKD的分类性能不仅明显优于其它局部特征描述子,还优于多数基于稀疏表示和深度学习等复杂模型的目标分类算法. 展开更多
关键词 上下文核描述子 核熵成分分析 特征降维 目标分类
在线阅读 下载PDF
基于核熵成分分析的流式数据自动分群方法 被引量:13
9
作者 董明利 马闪闪 +1 位作者 张帆 潘志康 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期206-211,共6页
针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K-me... 针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K-means算法的分类器,并采用一种基于向量夹角的最佳聚类数确定方法,最终获得细胞的分类标签。对实验获得的淋巴细胞免疫表型分析数据进行处理,结果表明,该方法能够实现细胞的快速、自动分群,整体分群准确率能够达到97%以上,操作简单便捷,提高了细胞分析的效率。 展开更多
关键词 流式细胞术 自动分群 核熵成分分析 K-MEANS算法 余弦相似度
在线阅读 下载PDF
基于多向核熵成分分析的微生物发酵过程多阶段划分及故障监测 被引量:7
10
作者 常鹏 王普 高学金 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第3期650-656,共7页
针对多向核主元分析法(MKPCA)在监控动态非线性和多模态间歇生产过程故障的不足,提出一种基于物理信息熵的多阶段多向核熵成分分析(multiple sub-stage multi-way kernel entropy component analysis,MSMKECA)的新方法用于故障监控。该... 针对多向核主元分析法(MKPCA)在监控动态非线性和多模态间歇生产过程故障的不足,提出一种基于物理信息熵的多阶段多向核熵成分分析(multiple sub-stage multi-way kernel entropy component analysis,MSMKECA)的新方法用于故障监控。该方法首先通过核映射将数据从低维空间映射到高维特征空间;其次在高维特征空间依据熵结构信息计算每个时刻数据矩阵的相似度指标进行阶段划分,将间歇过程划分为各稳定阶段和各过渡阶段,并在过渡阶段用时变的协方差代替固定协方差;最后在划分的阶段里分别建立模型进行间歇过程监测解决间歇过程的动态非线性和多阶段特性;将所提出的算法应用于青霉素发酵仿真系统的在线监测,验证了该方法的有效性。 展开更多
关键词 间歇过程 多向核主元分析 多向核熵成分分析 阶段划分 故障监测
在线阅读 下载PDF
基于核熵投影技术的多阶段间歇过程监测研究 被引量:12
11
作者 常鹏 王普 +1 位作者 高学金 齐咏生 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第7期1654-1661,共8页
针对间歇生产过程中非线性和多阶段的特性,提出一种基于改进展开的子阶段多向核熵成分分析(ISMKECA)的新方法。该方法首先将三维历史数据按照所提数据展开策略进行数据预处理,解决数据填充引入模型误差的问题;其次通过核映射将数据从低... 针对间歇生产过程中非线性和多阶段的特性,提出一种基于改进展开的子阶段多向核熵成分分析(ISMKECA)的新方法。该方法首先将三维历史数据按照所提数据展开策略进行数据预处理,解决数据填充引入模型误差的问题;其次通过核映射将数据从低维空间映射到高维特征空间,解决数据的非线性特性;然后在高维特征空间依据核熵和角结构信息对数据进行阶段划分,并在划分的阶段里分别建立ECA监控模型,解决数据的多模态问题;最后将提出的算法应用于工业青霉素发酵的在线监测,验证了该方法的有效性。 展开更多
关键词 间歇过程 MKPCA ISMKECA 过程监控
在线阅读 下载PDF
基于核熵成分分析的热轧带钢自适应聚类分析 被引量:5
12
作者 何飞 徐金梧 +1 位作者 梁治国 王晓晨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期1732-1738,共7页
为提高热轧带钢力学性能离线检测的针对性和生产过程控制的实时性,提出利用聚类分析方法实现生产状态的聚类,对错分或离群样本进行力学性能的重点检测。常用的高斯核主成分聚类分析中假设数据服从正态分布,以方差大小提取核主成分,而实... 为提高热轧带钢力学性能离线检测的针对性和生产过程控制的实时性,提出利用聚类分析方法实现生产状态的聚类,对错分或离群样本进行力学性能的重点检测。常用的高斯核主成分聚类分析中假设数据服从正态分布,以方差大小提取核主成分,而实际生产数据分布复杂,拟采用核熵主成分分析,并自适应选取核参数和聚类数,实现生产状态的自适应聚类。利用实际生产数据进行方法验证,与核主成分聚类分析相比具有更好的聚类结果,聚类正确率从86.23%提高到96.51%,更加有效地提高了质量检测的针对性。 展开更多
关键词 热轧带钢 核熵成分分析 聚类分析 力学性能
在线阅读 下载PDF
水库抗旱调度分期特征确定方法研究 被引量:11
13
作者 王义民 屠子倩 +2 位作者 畅建霞 郭爱军 霍秀秀 《自然灾害学报》 CSCD 北大核心 2020年第1期112-120,共9页
为在一定程度上减轻流域干旱损失,国家防汛抗旱总指挥部提出旱限水位的概念,并开展水库抗旱调度,降低干旱影响程度。旱限水位是水库低水位运行的控制性水位,其合理设置对提高区域水资源利用率意义重大,而水文气象特征在年内的阶段性变... 为在一定程度上减轻流域干旱损失,国家防汛抗旱总指挥部提出旱限水位的概念,并开展水库抗旱调度,降低干旱影响程度。旱限水位是水库低水位运行的控制性水位,其合理设置对提高区域水资源利用率意义重大,而水文气象特征在年内的阶段性变化要求基于旱限水位的水库管理应适应其变化特征。此次研究提出水库抗旱调度分期的确定方法,采用核主成分分析法提取指标的非线性特征,结合熵权法赋予指标权重后利用Fisher最优分割法对干旱的年内阶段性变化进行划分。以黄河流域刘家峡和小浪底水库为例,分期结果刘家峡水库分3期为:7月至9月,10月至3月,4月至6月;小浪底水库分3期为:7月至10月,11月至3月,4月至6月。 展开更多
关键词 水库抗旱调度 分期方法 核主成分分析法 熵权法 Fisher最优分割法
在线阅读 下载PDF
基于一种自适应核学习的KECA子空间故障特征提取 被引量:3
14
作者 张伟 许爱强 平殿发 《北京理工大学学报》 EI CAS CSCD 北大核心 2017年第8期863-868,874,共7页
核属性约简方法对于去除冗余信息,调整数据非线性结构具有独特的优势.针对航空电子设备故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自适应核函数优化学习的核熵元分析(kernel entropy com... 核属性约简方法对于去除冗余信息,调整数据非线性结构具有独特的优势.针对航空电子设备故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自适应核函数优化学习的核熵元分析(kernel entropy component analysis,KECA)特征提取方法.首先针对一种自适应核函数基于改进的Fisher核矩阵测量准则建立了一种面向多分类任务的核函数优化框架,然后将优化结果与KECA相结合,通过在KECA特征子空间中选择对输入数据Renyi熵估计有较大贡献的核矩阵特征向量来实现故障特征提取.实验结果表明,本文方法不仅提升了分类精度,而且对噪声具有一定的抑制作用,具有良好的泛化性能. 展开更多
关键词 核熵元分析 Fisher区别分析 自适应核函数 特征提取 故障识别
在线阅读 下载PDF
基于KECA+FDA的白酒电子鼻多特征鉴别方法 被引量:7
15
作者 殷勇 申晓鹏 于慧春 《农业机械学报》 EI CAS CSCD 北大核心 2018年第4期374-380,共7页
在引入基于核熵成分分析(KECA)的Fisher判别分析(FDA)方法的基础上,探究了用特征组合表征电子鼻信号时6种白酒的鉴别效果。首先,通过5种单一特征的FDA鉴别分析,筛选出积分值(INV)、相对稳态平均值(AVRS)、小波能量(WEV)3种较优特征,然... 在引入基于核熵成分分析(KECA)的Fisher判别分析(FDA)方法的基础上,探究了用特征组合表征电子鼻信号时6种白酒的鉴别效果。首先,通过5种单一特征的FDA鉴别分析,筛选出积分值(INV)、相对稳态平均值(AVRS)、小波能量(WEV)3种较优特征,然后通过它们的不同组合鉴别6种白酒,鉴别结果表明,多特征组合优于单特征,且三特征组合时的鉴别正确率最高。最后,在用INV、AVRS、WEV 3种特征值组合表征电子鼻信号的前提下,深入研究了KECA+FDA方法鉴别6种白酒的效果。当选取径向基函数(RBF)作为核函数后,采用基于矩阵最佳相似性的方法优化确定RBF核参数为16.860 8时,三特征组合下测试集的鉴别正确率由FDA的79.92%提高到KECA+FDA的100%。与BP神经网络和支持向量机的鉴别结果对比,KECA+FDA方法更具优势。这说明运用KECA+FDA方法可有效提高电子鼻对6种白酒的鉴别能力。 展开更多
关键词 白酒 电子鼻 核熵成分分析 FISHER判别分析 多特征鉴别
在线阅读 下载PDF
基于KPCA-HSMM设备退化状态识别方法的研究 被引量:5
16
作者 曾庆虎 邱静 +1 位作者 刘冠军 苗强 《兵工学报》 EI CAS CSCD 北大核心 2009年第6期740-745,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征... 为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量;然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量;并以此融合特征向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器,从而实现设备退化状态的识别。实验结果表明,该方法能有效的识别设备的退化状态,从而为多通道特征信息融合设备退化状态识别开辟新的途径。 展开更多
关键词 信息处理技术 信息融合 核主元分析 小波相关特征尺度熵 隐半马尔可夫模型 状态识别 退化状态
在线阅读 下载PDF
基于TF-CNN与KECA的下肢运动能力评价方法 被引量:5
17
作者 张燕 李威 +2 位作者 王建宙 杨鹏 刘作军 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第10期211-222,共12页
针对目前老年人和下肢运动疾病患者在运动障碍评定方面缺乏客观、定量标准的问题,提出一种基于迁移学习卷积神经网络(TF-CNN)与核熵成分分析(KECA)相结合的下肢运动能力评估方法。招募50名存在不同程度运动障碍的受试者,分为中年脑... 针对目前老年人和下肢运动疾病患者在运动障碍评定方面缺乏客观、定量标准的问题,提出一种基于迁移学习卷积神经网络(TF-CNN)与核熵成分分析(KECA)相结合的下肢运动能力评估方法。招募50名存在不同程度运动障碍的受试者,分为中年脑卒中后偏瘫组(MG,12例)、老年脑卒中后偏瘫组(EG,12例)及年轻健康组(YG,26例)。首先,采用Vicon MX三维步态采集系统采集50名受试者的步态视频与下肢运动学数据,利用像素自适应分割(PBAS)对步态视频进行预处理,提取步态轮廓图像。然后,通过TF-CNN提取步态轮廓图像的全连接层特征,将其与下肢运动数据在特征层进行融合。最后,利用KECA将融合矩阵映射到低维空间,提取主元子空间,并结合Zscore指标提出了融合步态视频数据与下肢运动学数据的运动障碍评估指标(MAI)。对各组MAI指标进行成对T-test检验表明MAI指标能够准确地对受试各组进行运动能力评定(p〈0.01);受试者的MAI指标与GARS-M评分的Pearson相关性分析表明,两者显著相关(r=0.92,p〈0.01)。实验结果证实了所提方法的有效性。 展开更多
关键词 卷积神经网络 迁移学习 下肢运动能力评价 核熵成分分析 特征提取
在线阅读 下载PDF
基于相似日和特征提取的短期风电功率预测 被引量:9
18
作者 张颖超 成金杰 +2 位作者 邓华 宗阳 章璇 《郑州大学学报(工学版)》 CAS 北大核心 2020年第5期44-49,共6页
为提高短期风电功率预测精度,增强预测模型对特定天气状况的代表性和适应性,提出一种基于离散Frechet距离与核熵成分分析(KECA)相结合的数据处理方法。通过引入离散Frechet距离,建立匹配相似日的数学模型,提取与预测日相似的样本,使用K... 为提高短期风电功率预测精度,增强预测模型对特定天气状况的代表性和适应性,提出一种基于离散Frechet距离与核熵成分分析(KECA)相结合的数据处理方法。通过引入离散Frechet距离,建立匹配相似日的数学模型,提取与预测日相似的样本,使用KECA从多种气象要素中提取合适的非线性主元作为支持向量机(SVM)模型的输入。实验结果表明:所提出的方法明显提高了预测精度并具有一定的适用性。 展开更多
关键词 离散Frechet距离 相似日 核熵成分分析 支持向量机 功率预测
在线阅读 下载PDF
基于核熵成分分析的油中溶解气体浓度预测 被引量:5
19
作者 江风云 唐勇波 《控制工程》 CSCD 北大核心 2020年第8期1419-1424,共6页
针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间... 针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间重构;最后采用Renyi熵信息测度确定KECA核参数,用KECA对重构相空间提取核熵成分作为支持向量机(Support Vector Machine,SVM)的输入,建立变压器油中溶解气体浓度预测模型。用本文方法、单变量时间序列方法、多元变量时间序列方法测试60例样本,本文方法具有最小的均方根误差,为0.1607。实验结果表明,本文提出的方法具有较优的预测精度和泛化能力。 展开更多
关键词 变压器 油中溶解气体 核熵成分分析 RENYI熵 预测
在线阅读 下载PDF
一种新的风电机组轴承故障监测与诊断策略 被引量:3
20
作者 齐咏生 赵鹏 +2 位作者 高胜利 王林 刘月文 《控制工程》 CSCD 北大核心 2018年第1期37-43,共7页
大型风力发电机组的轴承振动信号往往呈现非线性、非平稳特性,目前常用故障诊断方法在实际应用中误诊率较高。为此提出基于聚合经验模态分解(EEMD)和Teager能量算子提取信号的故障特征,并采用核熵成分分析(KECA)实现轴承故障的监... 大型风力发电机组的轴承振动信号往往呈现非线性、非平稳特性,目前常用故障诊断方法在实际应用中误诊率较高。为此提出基于聚合经验模态分解(EEMD)和Teager能量算子提取信号的故障特征,并采用核熵成分分析(KECA)实现轴承故障的监测与诊断策略。该方法首先基于EEMD分解对信号提取单分量本征模态函数,以满足Teager能量算子对信号的单分量要求;之后基于Teager能量算子解调算法提取特征向量:最后,将特征向量作为输入构建KECA诊断模型,实现故障的监测与诊断。将该方法应用于模拟风机滚动轴承故障试验台采集数据,结果表明该方法可有效提取非平稳信号中的故障特征,实现对风机轴承的故障识别。 展开更多
关键词 故障诊断 聚合经验模态分解 核熵成分分析 TEAGER能量算子 滚动轴承
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部