针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指...针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。展开更多
This paper presents information on a portable fall detection and alerting system mainly consisting of a custom vest and a mobile smart phone. A wearable motion detection sensor integrated with tri-axial accelerometer,...This paper presents information on a portable fall detection and alerting system mainly consisting of a custom vest and a mobile smart phone. A wearable motion detection sensor integrated with tri-axial accelerometer, gyroscope and Bluetooth is built into a custom vest worn by elderly. The vest can capture the reluctant acceleration and angular velocity about the activities of daily living(ADLs) of elderly in real time. The data via Bluetooth is then sent to a mobile smart phone running a fall detection program based on k-NN algorithm. When a fall occurs the phone can alert a family member or health care center through a call or emergent text message using a built in Global Positioning System. The experimental results show that the system discriminates falls from ADLs with a sensitivity of 95%, and a specificity of 96.67%. This system can provide remote monitoring and timely help for the elderly.展开更多
Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved i...Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved in both low-resolution(LR) training set and high-resolution(HR) training set. However, due to the "one-to-many" mapping between the LR image and HR ones in practice, the neighborhood relationship of the LR patch in LR space is quite different with that of the HR counterpart, that is to say the neighborhood relationship obtained is not true. In this paper, we explore a novel and effective re-identified K-nearest neighbor(RIKNN) method to search neighbors of LR patch. Compared with other methods, our method uses the geometrical information of LR manifold and HR manifold simultaneously. In particular, it searches K-NN of LR patch in the LR space and refines the searching results by re-identifying in the HR space, thus giving rise to accurate K-NN and improved performance. A statistical analysis of the influence of the training set size and nearest neighbor number is given, experimental results on some public face databases show the superiority of our proposed scheme over state-of-the-art face hallucination approaches in terms of subjective and objective results as well as computational complexity.展开更多
文摘针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.
基金supported by the Beijing Natural Science Foundation under grant No. 4102005partly supported by the National Nature Science Foundation of China (No. 61040039)
文摘This paper presents information on a portable fall detection and alerting system mainly consisting of a custom vest and a mobile smart phone. A wearable motion detection sensor integrated with tri-axial accelerometer, gyroscope and Bluetooth is built into a custom vest worn by elderly. The vest can capture the reluctant acceleration and angular velocity about the activities of daily living(ADLs) of elderly in real time. The data via Bluetooth is then sent to a mobile smart phone running a fall detection program based on k-NN algorithm. When a fall occurs the phone can alert a family member or health care center through a call or emergent text message using a built in Global Positioning System. The experimental results show that the system discriminates falls from ADLs with a sensitivity of 95%, and a specificity of 96.67%. This system can provide remote monitoring and timely help for the elderly.
基金supported by the National Natural Science Foundation of China(61172173,61303114,61271256,61272544,U1304615,U1404618)the National High Technology Research and Development Program of China(863 Program)No.2013AA014602
文摘Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved in both low-resolution(LR) training set and high-resolution(HR) training set. However, due to the "one-to-many" mapping between the LR image and HR ones in practice, the neighborhood relationship of the LR patch in LR space is quite different with that of the HR counterpart, that is to say the neighborhood relationship obtained is not true. In this paper, we explore a novel and effective re-identified K-nearest neighbor(RIKNN) method to search neighbors of LR patch. Compared with other methods, our method uses the geometrical information of LR manifold and HR manifold simultaneously. In particular, it searches K-NN of LR patch in the LR space and refines the searching results by re-identifying in the HR space, thus giving rise to accurate K-NN and improved performance. A statistical analysis of the influence of the training set size and nearest neighbor number is given, experimental results on some public face databases show the superiority of our proposed scheme over state-of-the-art face hallucination approaches in terms of subjective and objective results as well as computational complexity.