期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Kernel-kNN:基于信息能度量的核k-最近邻算法 被引量:16
1
作者 刘松华 张军英 +1 位作者 许进 贾宏恩 《自动化学报》 EI CSCD 北大核心 2010年第12期1681-1688,共8页
提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优... 提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优的度量矩阵.算法主要特点是:能较好地适用于高维数据,并有效提升kNN的分类性能.多个数据集的实验和分析表明,本文的Kernel-kNN算法与传统的kNN算法比较,在低维数据上,分类准确率相当;在高维数据上,分类性能有明显提高. 展开更多
关键词 距离度量 非线性变换 k-最近(k-NN) 方法
在线阅读 下载PDF
基于k-最近邻图的小样本KNN分类算法 被引量:27
2
作者 刘应东 牛惠民 《计算机工程》 CAS CSCD 北大核心 2011年第9期198-200,共3页
提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对... 提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对象进行类别标识。采用标准数据集进行测试,结果表明该算法在小样本情况下能够提高KNN的分类精度,减小最近邻阈值k对分类效果的影响。 展开更多
关键词 knn算法 k-最近 小样本 图划分 分类算法
在线阅读 下载PDF
基于核距离加权的k-最近邻红外小目标检测 被引量:2
3
作者 陈晓斯 程正东 +2 位作者 樊祥 朱斌 丁磊 《激光与红外》 CAS CSCD 北大核心 2014年第9期1060-1064,共5页
城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中... 城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中进行分类,再对各近邻进行距离加权,遍历图像后得到预测结果。实验结果证明了该方法在抑制背景、增强目标方面都有较好的效果。 展开更多
关键词 城市防空 红外小目标检测 k-最近 方法 距离加权
在线阅读 下载PDF
基于特别的特征表示方法的局部线性KNN算法 被引量:2
4
作者 卞则康 王士同 王宇翔 《计算机科学与探索》 CSCD 北大核心 2018年第1期134-142,共9页
提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加... 提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加入了非负约束,改进了传统的稀疏表示的方法,在目标函数中增加了集群正则化项,然后优化新的目标函数得到一个新的近似的特征表示。L^2KNN算法具有最近邻集群效应(clustering effect of nearest neighbors,CENN),不仅可以增强测试样本与同类的训练样本之间的相关性,而且可以增强同类训练样本之间的相关性。L^2KNN算法进一步应用到L^2KNNc(L^2KNN-based classifier)分类器中,并提出一种系数截断的方法增加L^2KNNc分类器的泛化性能,进一步提高分类器的分类性能。在人脸数据集上的实验结果证明了上述结论。 展开更多
关键词 特别的特征表示 局部线性K最近算法(L^2knn) 最近集群效应(CENN) 系数截断方法
在线阅读 下载PDF
周期分类和Single-Pass聚类相结合的话题识别与跟踪方法 被引量:28
5
作者 税仪冬 瞿有利 黄厚宽 《北京交通大学学报》 CAS CSCD 北大核心 2009年第5期85-89,共5页
针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定... 针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定程度之后,对已经聚类的报道进行周期分类,使话题簇精度提高,从而提高后续话题识别与跟踪精度.实验表明这种方法是有效的,能够降低漏检率与错检率,减少归一化错误识别代价. 展开更多
关键词 话题识别与跟踪 增量聚类 文本分类 k-最近方法分类
在线阅读 下载PDF
基于KNN-LSTM的短时交通流预测 被引量:34
6
作者 罗向龙 李丹阳 +1 位作者 杨彧 张生瑞 《北京工业大学学报》 CAS CSCD 北大核心 2018年第12期1521-1527,共7页
针对现有预测模型无法在交通大数据中提取交通流序列的内部规律,且未能充分利用交通流的时空相关性以实现高精度预测的问题,提出了一种基于K-最近邻(K-nearest neighbor,KNN)与长短时记忆(long short term memory,LSTM)网络模型相结合... 针对现有预测模型无法在交通大数据中提取交通流序列的内部规律,且未能充分利用交通流的时空相关性以实现高精度预测的问题,提出了一种基于K-最近邻(K-nearest neighbor,KNN)与长短时记忆(long short term memory,LSTM)网络模型相结合的短时交通流预测模型.采用KNN算法选择路网中与预测站点时空相关的检测站,以选择的检测站的交通流序列构造数据集,将其输入LSTM模型中进行训练及测试,并通过美国交通研究数据实验室的真实交通数据对提出的模型进行验证.结果表明:与现有的交通预测模型相比,该方法能更好地提取交通流序列的时空特性,预测准确率平均可提高12. 28%,可为交通诱导与控制提供必要的依据. 展开更多
关键词 智能交通 交通流预测 k-最近(knn) 深度学习 长短时记忆(LSTM)网络
在线阅读 下载PDF
一种基于Canopy和粗糙集的CRS-KNN文本分类算法 被引量:9
7
作者 姚彬修 倪建成 +2 位作者 于苹苹 曹博 李淋淋 《计算机工程与应用》 CSCD 北大核心 2017年第11期172-177,共6页
针对KNN算法的分类效率随着训练集规模和特征维数的增加而逐渐降低的问题,提出了一种基于Canopy和粗糙集的CRS-KNN(Canopy Rough Set-KNN)文本分类算法。算法首先将待处理的文本数据通过Canopy进行聚类,然后对得到的每个类簇运用粗糙集... 针对KNN算法的分类效率随着训练集规模和特征维数的增加而逐渐降低的问题,提出了一种基于Canopy和粗糙集的CRS-KNN(Canopy Rough Set-KNN)文本分类算法。算法首先将待处理的文本数据通过Canopy进行聚类,然后对得到的每个类簇运用粗糙集理论进行上、下近似分割,对于分割得到的下近似区域无需再进行分类,而通过上、下近似作差所得的边界区域数据需要通过KNN算法确定其最终的类别。实验结果表明,该算法降低了KNN算法的数据计算规模,提高了分类效率。同时与传统的KNN算法和基于聚类改进的KNN文本分类算法相比,准确率、召回率和F_1值都得到了一定的提高。 展开更多
关键词 Canopy聚类 粗糙集 k-最近(knn)算法 文本分类
在线阅读 下载PDF
空间相关性分析的符号数据分类方法 被引量:1
8
作者 付康安 王文剑 郭虎升 《计算机科学与探索》 CSCD 北大核心 2019年第7期1165-1173,共9页
针对目前符号数据的分类性能较低,通过挖掘属性值与标签之间可能存在的空间结构关系,提出了一种基于空间相关性分析的符号数据分类方法。该方法首先采用独热编码的方式对符号数据进行特征扩容,然后基于互信息和条件熵信息度量方法,定义... 针对目前符号数据的分类性能较低,通过挖掘属性值与标签之间可能存在的空间结构关系,提出了一种基于空间相关性分析的符号数据分类方法。该方法首先采用独热编码的方式对符号数据进行特征扩容,然后基于互信息和条件熵信息度量方法,定义了一种符号数据空间关系表示方法。在此基础上,分别结合支持向量机(support vector machine,SVM)和K-最近邻(K-nearest neighbor,KNN)模型分类器,提出了基于空间相关性分析的SVM分类算法(SVM classification algorithm based on space correlation analysis,SCA_SVM)和基于空间相关性分析的KNN分类算法(KNN classification algorithm based on space correlation analysis,SCA_KNN)两种分类算法。该方法既能够体现出属性值与标签之间的关联关系,也可以有效地度量不同属性值之间的距离或差异性。在标准UCI数据集上的实验结果表明,该方法在分类性能上更加有效。 展开更多
关键词 符号数据 分类 空间相关性分析 支持向量机(SVM) k-最近(knn)
在线阅读 下载PDF
基于机器学习的维吾尔文文本分类研究 被引量:20
9
作者 阿力木江·艾沙 吐尔根·依布拉音 +1 位作者 艾山·吾买尔 马尔哈巴·艾力 《计算机工程与应用》 CSCD 2012年第5期110-112,共3页
随着Internet上维吾尔文信息的迅速发展,维吾尔文文本分类成为处理和组织这些大量文本数据的关键技术。研究维吾尔文文本分类相关技术和方法,针对维吾尔文文本在向量空间模型(VSM)表示下的高维性,采用词干提取和IG相结合的方法对表示空... 随着Internet上维吾尔文信息的迅速发展,维吾尔文文本分类成为处理和组织这些大量文本数据的关键技术。研究维吾尔文文本分类相关技术和方法,针对维吾尔文文本在向量空间模型(VSM)表示下的高维性,采用词干提取和IG相结合的方法对表示空间进行降维。采用基于机器学习的分类算法(kNN和Nave Bayes)对维吾尔文文本语料进行了分类实验并分析了实验结果。 展开更多
关键词 文本分类 朴素贝叶斯方法 k-最近方法(knn) 维吾尔语 特征选择
在线阅读 下载PDF
网络评价倾向性研究 被引量:2
10
作者 程传鹏 《计算机工程与应用》 CSCD 北大核心 2011年第25期156-159,共4页
提出了基于语义相似度判别用户评价倾向的方法。利用同义词词林计算词语的相似度,由词语的相似度构造二部图,通过求二部图的最大匹配获得文本之间的相似度。依据KNN分类来判断文本的倾向性。实验结果表明该方法优于传统的倾向性判断的... 提出了基于语义相似度判别用户评价倾向的方法。利用同义词词林计算词语的相似度,由词语的相似度构造二部图,通过求二部图的最大匹配获得文本之间的相似度。依据KNN分类来判断文本的倾向性。实验结果表明该方法优于传统的倾向性判断的方法。 展开更多
关键词 同义词词林 k-最近(knn)分类 文本相似度 二部图 最大匹配
在线阅读 下载PDF
基于MiRfilter系统的毛果杨miRNA预测
11
作者 赵洁苑 龚云路 王翼飞 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期397-403,435,共8页
从参数训练、参数范围训练、候选成熟体打分等方面改进miRNA预测系统MiRfilter,使其适应拥有更长前体的植物miRNA的预测.预测毛果杨基因组上的miRNA,并对系统进行精度检验.利用MiRfilter系统共预测出3 860条候选miRNA;在110个正样本中,... 从参数训练、参数范围训练、候选成熟体打分等方面改进miRNA预测系统MiRfilter,使其适应拥有更长前体的植物miRNA的预测.预测毛果杨基因组上的miRNA,并对系统进行精度检验.利用MiRfilter系统共预测出3 860条候选miRNA;在110个正样本中,正确识别91条前体和80条成熟体,前体预测精度为82.73%,成熟体预测精度为72.73%;在毛果杨第4号染色体(LG_Ⅳ)上得到的1 968个负样本中,有12个数据可认为是miRNA,假阳性率为0.61%. 展开更多
关键词 植物MIRNA MiRfilter 毛果杨基因组 一类分类法 k-最近分类器(knn)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部