期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测
被引量:
11
1
作者
金秀章
史德金
乔鹏
《中国电机工程学报》
EI
CSCD
北大核心
2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。...
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。
展开更多
关键词
NOx浓度
k近邻互信息
沙地猫群优化算法
最小二乘支持向量机
软测量模型
在线阅读
下载PDF
职称材料
基于结构改进RBF神经网络的NO_(x)预测模型比较
2
作者
于静
金秀章
刘岳
《控制工程》
CSCD
北大核心
2023年第9期1616-1623,共8页
针对燃煤电厂选择性催化还原(selective catalytic reduction,SCR)脱硝系统入口氮氧化物浓度测量准确性的问题,提出基于结构改进的径向基函数神经网络(improvedradial basis functionneural network,IRBFNN)预测模型。采用互信息选取辅...
针对燃煤电厂选择性催化还原(selective catalytic reduction,SCR)脱硝系统入口氮氧化物浓度测量准确性的问题,提出基于结构改进的径向基函数神经网络(improvedradial basis functionneural network,IRBFNN)预测模型。采用互信息选取辅助变量作为模型的输入变量,避免变量过多或过少导致模型精度降低;利用k近邻互信息估计辅助变量的延迟时间,解决时序问题;采用调整时序的辅助变量和主导变量建立结构改进的RBF神经网络(RBFNN)预测模型;采用人工鱼群算法(artificial fish swarm algorithm,AFSA)和粒子群优化(particle swarm optimization,PSO)算法加速验证结构改进模型的优越性,并对2种优化算法的优化能力进行分析。仿真结果表明,结构改进的RBF神经网络模型的均方根误差和平均绝对百分比误差明显高于原模型;AFSA优化后的模型精度高于PSO算法,然而其需要调节的参数较多。
展开更多
关键词
改进RBF神经网络
互信息
k近邻互信息
人工鱼群算法
粒子群优化算法
在线阅读
下载PDF
职称材料
题名
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测
被引量:
11
1
作者
金秀章
史德金
乔鹏
机构
华北电力大学控制与计算机工程学院
出处
《中国电机工程学报》
EI
CSCD
北大核心
2024年第1期182-190,I0015,共10页
文摘
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。
关键词
NOx浓度
k近邻互信息
沙地猫群优化算法
最小二乘支持向量机
软测量模型
Keywords
NOx concentration
k
nearest neighbor mutual information
sandcat swarm optimization algorithm
least squares support vector machine
soft sensor model
分类号
TK39 [动力工程及工程热物理—热能工程]
在线阅读
下载PDF
职称材料
题名
基于结构改进RBF神经网络的NO_(x)预测模型比较
2
作者
于静
金秀章
刘岳
机构
华北电力大学自动化系
出处
《控制工程》
CSCD
北大核心
2023年第9期1616-1623,共8页
基金
国家重点专项资助项目(2016YFB0600701)。
文摘
针对燃煤电厂选择性催化还原(selective catalytic reduction,SCR)脱硝系统入口氮氧化物浓度测量准确性的问题,提出基于结构改进的径向基函数神经网络(improvedradial basis functionneural network,IRBFNN)预测模型。采用互信息选取辅助变量作为模型的输入变量,避免变量过多或过少导致模型精度降低;利用k近邻互信息估计辅助变量的延迟时间,解决时序问题;采用调整时序的辅助变量和主导变量建立结构改进的RBF神经网络(RBFNN)预测模型;采用人工鱼群算法(artificial fish swarm algorithm,AFSA)和粒子群优化(particle swarm optimization,PSO)算法加速验证结构改进模型的优越性,并对2种优化算法的优化能力进行分析。仿真结果表明,结构改进的RBF神经网络模型的均方根误差和平均绝对百分比误差明显高于原模型;AFSA优化后的模型精度高于PSO算法,然而其需要调节的参数较多。
关键词
改进RBF神经网络
互信息
k近邻互信息
人工鱼群算法
粒子群优化算法
Keywords
Improved RBF neural networ
k
mutual information
k
-nearest neighbor mutual information
artificial fish swarm algorithm
particle swarm optimization algorithm
分类号
TP29 [自动化与计算机技术—检测技术与自动化装置]
TK39 [动力工程及工程热物理—热能工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测
金秀章
史德金
乔鹏
《中国电机工程学报》
EI
CSCD
北大核心
2024
11
在线阅读
下载PDF
职称材料
2
基于结构改进RBF神经网络的NO_(x)预测模型比较
于静
金秀章
刘岳
《控制工程》
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部