期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于样本密度加权的神经网络分类器在文本分类中的应用
被引量:
1
1
作者
廖一星
《计算机应用与软件》
CSCD
2009年第9期234-236,239,共4页
为了提高文本分类精度,根据训练集的样本密度的不同,提出了一种基于k最近邻密度估计的样本加权算法,从而使得样本密度较大的样本权重得到加强,处于样本密度平均水平的样本权重保持不变,而样本密度较小的样本权重得到减弱。并将这种方法...
为了提高文本分类精度,根据训练集的样本密度的不同,提出了一种基于k最近邻密度估计的样本加权算法,从而使得样本密度较大的样本权重得到加强,处于样本密度平均水平的样本权重保持不变,而样本密度较小的样本权重得到减弱。并将这种方法所构成的神经网络分类器用于文本分类。实验结果表明,这种方法可以在一定程度上提高文本分类精度,优于原始的未加权的分类方法。
展开更多
关键词
k
最近邻密度估计
神经网络
文本分类
在线阅读
下载PDF
职称材料
题名
基于样本密度加权的神经网络分类器在文本分类中的应用
被引量:
1
1
作者
廖一星
机构
浙江财经学院信息学院
出处
《计算机应用与软件》
CSCD
2009年第9期234-236,239,共4页
文摘
为了提高文本分类精度,根据训练集的样本密度的不同,提出了一种基于k最近邻密度估计的样本加权算法,从而使得样本密度较大的样本权重得到加强,处于样本密度平均水平的样本权重保持不变,而样本密度较小的样本权重得到减弱。并将这种方法所构成的神经网络分类器用于文本分类。实验结果表明,这种方法可以在一定程度上提高文本分类精度,优于原始的未加权的分类方法。
关键词
k
最近邻密度估计
神经网络
文本分类
Keywords
k nearest density estimation neural network (nn) text classification
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TN911.7 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于样本密度加权的神经网络分类器在文本分类中的应用
廖一星
《计算机应用与软件》
CSCD
2009
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部