期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
基于RSA模型和改进K-means算法的电商行业客户细分
1
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-means算法 密度峰值聚类 k近邻
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
2
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD k均值密度权重聚类 蝴蝶优化算法 k近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:3
3
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 k-means 特征聚类 自适应k近邻 特征权重 加权k近邻密度
在线阅读 下载PDF
基于K-means和近邻回归算法的Kinect植株深度图像修复 被引量:19
4
作者 沈跃 徐慧 +1 位作者 刘慧 李宁 《农业工程学报》 EI CAS CSCD 北大核心 2016年第19期188-194,共7页
针对Kinect传感器应用于农业植株检测产生的图像噪声问题,特别是由光线以及传感器自身局限导致的匹配图像目标植株数据的缺失,提出一种基于K-means和近邻回归算法的植株深度检测图像修复方法。首先对Kinect传感器获取的彩色RGB图像进行... 针对Kinect传感器应用于农业植株检测产生的图像噪声问题,特别是由光线以及传感器自身局限导致的匹配图像目标植株数据的缺失,提出一种基于K-means和近邻回归算法的植株深度检测图像修复方法。首先对Kinect传感器获取的彩色RGB图像进行阈值分割预处理提取植株目标区域,再利用K-means聚类算法去除背景噪声,使得植株目标区域轮廓更加清晰;然后基于配准的彩色图像和深度图像,对获取的深度图像中可疑像素点的深度数据采取近邻回归算法进行修复,再将修复后的深度图像与目标分割后的彩色图像进行植株区域的匹配,并进行二次近邻回归算法修正错误的深度数据,最后获取目标植株深度信息的检测图像。试验结果证明,采用RGB阈值分割和K-means聚类算法植株目标区域分割误差均值为12.33%,比单一RGB阈值分割和K-means聚类分割误差降低了12.12和41.48个百分点;同时结合聚类后的彩色图像对深度数据进行两次近邻回归算法修复深度数据,能够提高深度数据边缘的清晰度,单帧深度数据空洞点进行修复数据的准确度提高。该研究结果可为农业植株检测、植株三维重构、精准对靶喷雾等提供参考。 展开更多
关键词 图像处理 图像分割 算法 植株检测 深度数据 图像修复 k-means聚类 近邻回归
在线阅读 下载PDF
图像高维数据的K-means自适应聚类算法 被引量:6
5
作者 唐颖军 黄淑英 +2 位作者 杨勇 戴利云 李贤虹 《小型微型计算机系统》 CSCD 北大核心 2016年第8期1854-1856,共3页
在图像信息处理中视觉词典生成过程需要对高维数据进行聚类操作.但这些高维数据不可避免会对计算机内存和计算能力提出更高要求.本文针对聚类过程中可能产生的内存耗尽以及初始聚类质心设置问题,对现有K-means算法加以改进.通过建立初... 在图像信息处理中视觉词典生成过程需要对高维数据进行聚类操作.但这些高维数据不可避免会对计算机内存和计算能力提出更高要求.本文针对聚类过程中可能产生的内存耗尽以及初始聚类质心设置问题,对现有K-means算法加以改进.通过建立初始聚类质心与各类场景中的特定语义的关联,使之体现图像各类场景的类别特征集合,进而用于指导K-means过程中的初始质心设置.此外,在迭代过程中通过批次读入特征描述子,采用K近邻进行簇分配,从而避免了一次性读入全部特征描述子而造成的内存耗尽问题.同时,对于新的簇质心生成采用综合判别均值与中位值的办法来提高各族的聚合度.本文方法与Oxford University提出的K-means进行了对比,实验结果表明本文算法在性能与收敛上更具优势. 展开更多
关键词 k均值聚类 视觉词典 图像高维特征描述 k近邻
在线阅读 下载PDF
基于最近共享邻居节点的K-means聚类算法 被引量:2
6
作者 单世民 于红 +1 位作者 张业嘉诚 刘馨月 《计算机工程与应用》 CSCD 北大核心 2008年第6期178-181,共4页
聚类分析是一种重要的数据挖掘方法。K-means聚类算法在数据挖掘领域具有非常重要的应用价值。针对K-means需要人工设定聚类个数并且易陷入局部极优的缺陷,提出了一种基于最近共享邻近节点的K-means聚类算法(KSNN)。KSNN在数据集中搜索... 聚类分析是一种重要的数据挖掘方法。K-means聚类算法在数据挖掘领域具有非常重要的应用价值。针对K-means需要人工设定聚类个数并且易陷入局部极优的缺陷,提出了一种基于最近共享邻近节点的K-means聚类算法(KSNN)。KSNN在数据集中搜索中心点,依据中心点查找数据集个数,为K-means聚类提供参数。从而克服了K-means需要人工设定聚类个数的问题,同时具有较好的全局收敛性。实验证明KSNN算法比K-means、粒子群K-means(pso)以及多中心聚类算法(MCA)有更好的聚类效果。 展开更多
关键词 聚类分析 kmeans 最近共享邻居
在线阅读 下载PDF
融合最近邻矩阵与局部密度的自适应K-means聚类算法 被引量:6
7
作者 艾力米努尔·库尔班 谢娟英 姚若侠 《计算机科学与探索》 CSCD 北大核心 2023年第2期355-366,共12页
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启... 针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。 展开更多
关键词 自适应k-means聚类算法 密度峰值原则 最邻近吸收原则 局部密度
在线阅读 下载PDF
基于概率密度的自适应k近邻缺失值填充方法
8
作者 梁路 林俊跃 霍颖翔 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期80-90,共11页
基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本... 基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本之间的相似性受属性取值概率影响,此时用传统的距离公式来度量相似性是不够准确的。因此,文章针对非均匀分布的不平衡数据集提出了一种自适应k近邻缺失值填充方法(AkNNI):首先,引入属性的概率密度,动态调整各个属性的重要性,凸显稀疏值与缩小频繁值在距离计算上的贡献,从而更好地表达样本的异质性以及捕捉样本之间的相似性;然后,针对高缺失率下数据集中完备样本稀少的情况,综合考虑了样本的相似性和完整性,设计了新的k近邻的选择流程。实验选取了6个非均匀分布数据集,对比了AkNNI方法与其他5种经典填充方法的填充效果,验证了填充后的数据集在k近邻分类器的分类效果,深入探索了3种评估指标的相互关系。实验结果表明AkNNI方法具有更高的填充准确度和分类准确度:在6种缺失值填充算法中,AkNNI方法在各个数据集上取得的平均RMSE最低、平均皮尔逊相关系数最高以及平均分类准确率最高。同时,在高缺失率下,AkNNI方法在各个数据集上仍能保持较低的RMSE、较高的皮尔逊相关系数和较高的分类准确度。 展开更多
关键词 欧氏距离 k近邻 缺失值填充 概率密度 非均匀分布
在线阅读 下载PDF
最近邻优化的k-means聚类算法 被引量:33
9
作者 林涛 赵璨 《计算机科学》 CSCD 北大核心 2019年第S11期216-219,共4页
传统的k-means算法不论其数据样本的分布情况,将簇边缘位置、簇中心位置、离群点的数据样本全部按照最小距离原则,划分到离它最近的聚类中心所在簇中,没有考虑数据样本与其他簇之间的关系。如果数据样本与另一簇中心的距离接近于最小距... 传统的k-means算法不论其数据样本的分布情况,将簇边缘位置、簇中心位置、离群点的数据样本全部按照最小距离原则,划分到离它最近的聚类中心所在簇中,没有考虑数据样本与其他簇之间的关系。如果数据样本与另一簇中心的距离接近于最小距离,则此数据样本与两个簇的关系都很大,显然这样直接划分并不合理。针对此问题,文中提出了最近邻优化的k-means聚类算法。运用近邻的思想,将这些不“很属于”某簇的数据样本划分到其最近邻数据样本所在的簇中,实验结果表明,这种最近邻优化的k-means聚类算法有效地减少了算法的迭代次数,提高了算法的聚类准确度,得到了良好的聚类效果。 展开更多
关键词 k-means 分布 关系 最近邻
在线阅读 下载PDF
基于MDk-DPC的空中目标自动分群方法 被引量:1
10
作者 马钰棠 孙鹏 +2 位作者 张杰勇 闫云飞 赵亮 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第10期3219-3229,共11页
空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用... 空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用k近邻计算目标的局部密度,使其能更真实地反映目标周围分布;通过自适应选取聚类中心方法确定聚类中心,并运用密度峰值算法指定剩余点类别完成分群。仿真实验表明,所提方法在人工合成数据集和UCI真实数据集上均有更好的聚类性能,同时通过对空战场仿真数据进行分群验证了所提方法的可行性和有效性。 展开更多
关键词 态势估计 目标分群 流形距离 k近邻 密度峰值聚类
在线阅读 下载PDF
KNMC:基于近内存计算的k-NN和k-means加速器设计
11
作者 连铎 刘博生 +1 位作者 吴亚兰 武继刚 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1405-1411,共7页
k近邻算法(k-Nearest Neighbor,k-NN)和k-均值(k-means)算法在数据挖掘,文本分类,人脸识别等领域中被广泛应用.相比于深度学习(如卷积神经网络,Convolutional Neural Networks,CNNs),k-NN和k-means能获得相近的精度情况下提供更简单的计... k近邻算法(k-Nearest Neighbor,k-NN)和k-均值(k-means)算法在数据挖掘,文本分类,人脸识别等领域中被广泛应用.相比于深度学习(如卷积神经网络,Convolutional Neural Networks,CNNs),k-NN和k-means能获得相近的精度情况下提供更简单的计算.尽管如此,硬件加速器在计算k-NN和k-means过程中,需大量访问片外动态随机存取存储器(Dynamic Random-Access Memory,DRAM)设备,能耗非常高.为解决这一问题,本项工作提出一个基于近内存计算(near-memory computing)的k-NN和k-means的可配置加速器KNMC.该加速器通过配置能灵活调度k-NN和k-means.为提高加速器的能效,本项工作还进行设计空间探索,探索加速器达到最优能效的片上缓存(on-chip buffer)容量和处理单元(Process Element,PE)规模的配置.实验结果表明,KNMC与最先进的基准加速器相比,能有效提升性能和能效. 展开更多
关键词 加速器 k近邻算法 k-均值算法 近内存计算 设计空间探索
在线阅读 下载PDF
基于CK-Hough联合算法的人体微多普勒频率估计
12
作者 陈雨馨 彭意群 +1 位作者 柳润金 丁一鹏 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期3329-3341,共13页
为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C... 为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C均值算法对时频图进行聚类分析,在这一过程中,本文采用数据预处理技术自适应调整聚类类别数c以适应多样化应用场景,从而获得人体各散射部位的频域范围,有效地抑制了分量间的相互干扰;第三,通过改进度量函数的K近邻算法增强相邻时刻聚类结果的相关性,拟合各部位的瞬时频率曲线;最后,采用霍夫变换动态调整度量函数中权值μ的取值,得到目标微多普勒频率的精确估计结果。研究结果表明:本文提出的CK-Hough提取了直/曲线行走场景下人类目标四肢的微多普勒频率;与传统的峰值搜索算法、线性预测维特比算法以及基于Bezier-Hough模型的频率拟合算法相比,本文提出的CK-Hough算法在直线行走实验场景下,总频率的估计误差率分别降低了40.40%、45.47%和26.16%;在曲线行走实验场景下,其估计误差率分别降低了58.35%、68.35%和41.65%。 展开更多
关键词 微多普勒频率提取 时频分析 自适应模糊C均值聚类 k近邻 霍夫变换
在线阅读 下载PDF
基于锚点匹配和距离修正的轨迹相似性度量方法
13
作者 桂志鹏 窦晨 +2 位作者 彭德华 刘宇航 吴华意 《地理与地理信息科学》 北大核心 2025年第1期1-14,共14页
轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性... 轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性度量方法,基于K近邻算法识别两条轨迹中空间相似度高的点对作为锚点,以划分区间约束其他点对匹配,并对受序列顺序约束无法匹配至空间邻近点的轨迹点进行距离修正,优化轨迹相似性计算。在深圳市515条人工标注轨迹数据上的验证结果表明,与改进的编辑距离、模糊最长公共子串和时空格网模型等8种方法相比,该方法在轨迹聚类任务中准确性提升2.8%~41.9%,并对轨迹长度、噪声和采样率变化具有较高的鲁棒性;此外,通过消融实验、特殊场景分析等证明了方法各步骤的有效性,并探讨了算法参数对精度的影响。研究结果可为轨迹聚类、轨迹检索等下游任务提供支撑。 展开更多
关键词 轨迹相似性 轨迹匹配 时间序列 空间邻近性 k近邻 距离衰减
在线阅读 下载PDF
改进型加权KNN算法的不平衡数据集分类 被引量:26
14
作者 王超学 潘正茂 +2 位作者 马春森 董丽丽 张涛 《计算机工程》 CAS CSCD 2012年第20期160-163,168,共5页
K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚... K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚类,按照权重分配模型计算各训练样本的权重,通过改进的KNN算法对测试样本进行分类。基于UCI数据集的大量实验结果表明,GAK-KNN算法的识别率和整体性能都优于传统KNN算法及其他改进算法。 展开更多
关键词 不平衡数据集 分类 k最邻近算法 权重分配模型 遗传算法 k-means算法
在线阅读 下载PDF
基于朴素贝叶斯K近邻的快速图像分类算法 被引量:12
15
作者 张旭 蒋建国 +1 位作者 洪日昌 杜跃 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第2期302-310,共9页
朴素贝叶斯最近邻(NBNN)分类算法具有非特征量化和图像-类别度量方式的优点,但算法运行速度较慢,分类正确率较低.针对此问题,提出一种朴素贝叶斯K近邻分类算法,基于快速近似最近邻(FLANN)搜索特征的K近邻用于分类决策并去除背景信息对... 朴素贝叶斯最近邻(NBNN)分类算法具有非特征量化和图像-类别度量方式的优点,但算法运行速度较慢,分类正确率较低.针对此问题,提出一种朴素贝叶斯K近邻分类算法,基于快速近似最近邻(FLANN)搜索特征的K近邻用于分类决策并去除背景信息对分类性能的影响;为了进一步提高算法的运行速度及减少算法的内存开销,采用特征选择的方式分别减少测试图像和训练图像集的特征数目,并尝试同时减少测试图像和训练图像集中的特征数目平衡分类正确率与分类时间之间的矛盾.该算法保留了原始NBNN算法的优点,无需参数学习的过程,实验结果验证了算法的正确性和有效性. 展开更多
关键词 图像分类 最近邻 k近邻 图像-类别距离 特征选择
在线阅读 下载PDF
基于结构学习的KNN分类算法 被引量:23
16
作者 孙岩 吕世聘 +1 位作者 王秀坤 唐一源 《计算机科学》 CSCD 北大核心 2007年第12期184-186,237,共4页
KNN(K-Nearest Neighbor)算法和贝叶斯网络分类算法(Bayesian Network,BN)都是目前应用非常广泛的分类算法。本文首先分析了KNN和BN的分类特点,然后在保留了两个算法在分类问题中优点的基础上,提出了基于贝叶斯网络结构学习的KNN算法(BN... KNN(K-Nearest Neighbor)算法和贝叶斯网络分类算法(Bayesian Network,BN)都是目前应用非常广泛的分类算法。本文首先分析了KNN和BN的分类特点,然后在保留了两个算法在分类问题中优点的基础上,提出了基于贝叶斯网络结构学习的KNN算法(BN-KNN)。实验结果表明,BN-KNN算法能够有效地提高分类的正确率。 展开更多
关键词 贝叶斯网络 k-近邻算法 距离加权
在线阅读 下载PDF
Kernel-kNN:基于信息能度量的核k-最近邻算法 被引量:16
17
作者 刘松华 张军英 +1 位作者 许进 贾宏恩 《自动化学报》 EI CSCD 北大核心 2010年第12期1681-1688,共8页
提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优... 提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优的度量矩阵.算法主要特点是:能较好地适用于高维数据,并有效提升kNN的分类性能.多个数据集的实验和分析表明,本文的Kernel-kNN算法与传统的kNN算法比较,在低维数据上,分类准确率相当;在高维数据上,分类性能有明显提高. 展开更多
关键词 距离度量 非线性变换 k-最近邻(k-NN) 核方法
在线阅读 下载PDF
递归滤波与KNN的高光谱遥感图像分类方法 被引量:11
18
作者 涂兵 张晓飞 +2 位作者 张国云 王锦萍 周瑶 《国土资源遥感》 CSCD 北大核心 2019年第1期22-32,共11页
为了有效去除高光谱图像中的噪声,强化空间结构,充分利用地物目标的空间上下文信息,提升高光谱图像的分类精度,提出一种基于递归滤波(recursive filtering,RF)和KNN(k-nearest neighbor)算法的高光谱图像分类方法。首先,利用主成分分析... 为了有效去除高光谱图像中的噪声,强化空间结构,充分利用地物目标的空间上下文信息,提升高光谱图像的分类精度,提出一种基于递归滤波(recursive filtering,RF)和KNN(k-nearest neighbor)算法的高光谱图像分类方法。首先,利用主成分分析法对高光谱图像进行降维;其次,通过RF算法对降维后的主成分图像进行滤波,以增强遥感图像的轮廓特征;然后,采用KNN算法计算测试样本与不同类别训练样本的欧式距离,根据比较k个最小欧式距离的平均值得到测试样本所属类别;最后,在2个典型的数据库上进行实验验证,并分析所提算法中不同参数对分类精度的影响。实验结果表明,RF算法可以有效地去除噪声点,强化图像轮廓,与其他高光谱图像分类方法相比,该方法在分类准确性方面表现突出。 展开更多
关键词 高光谱图像 递归滤波 kNN 主成分分析 欧式距离
在线阅读 下载PDF
一种模糊-证据kNN分类方法 被引量:13
19
作者 吕锋 杜妮 文成林 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2390-2395,共6页
已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本... 已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本文提出一种模糊-证据kNN算法.首先,利用特征的模糊熵值确定每个特征的权重,基于加权欧氏距离选取k个邻居;然后,利用邻居的信息熵区别对待邻居并结合FkNN在表示信息和EkNN在融合决策方面的优势,采取先模糊化再融合的方法确定待分类样本的类别.本文的方法在UCI标准数据集上进行了测试,结果表明该方法优于已有算法. 展开更多
关键词 k-最近邻(k-NN) 加权欧氏距离 模糊熵 折扣因子 证据理论
在线阅读 下载PDF
一种新的基于距离加权的模板约简K近邻算法 被引量:13
20
作者 杨金福 宋敏 李明爱 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2378-2383,共6页
作为一种非参数的分类算法,K近邻(KNN)算法简单有效并且易于实现。但传统的KNN算法认为所有的近邻样本贡献相等,这就使得算法容易受到噪声的干扰,同时对于大的数据集,KNN的计算代价非常大。针对上述问题,该文提出了一种新的基于距离加... 作为一种非参数的分类算法,K近邻(KNN)算法简单有效并且易于实现。但传统的KNN算法认为所有的近邻样本贡献相等,这就使得算法容易受到噪声的干扰,同时对于大的数据集,KNN的计算代价非常大。针对上述问题,该文提出了一种新的基于距离加权的模板约简K近邻算法(TWKNN)。利用模板约简技术,将训练集中远离分类边界的样本去掉,同时按照各个近邻与待测样本的距离为K个近邻赋予不同的权值,增强了算法的鲁棒性。实验结果表明,该方法可以有效地减少训练样本数目,同时还能保持传统KNN的分类精度。 展开更多
关键词 模式识别 距离加权 模板约简 k近邻(kNN)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部