期刊文献+
共找到6,821篇文章
< 1 2 250 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:1
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Controlling update distance and enhancing fair trainable prototypes in federated learning under data and model heterogeneity
2
作者 Kangning Yin Zhen Ding +1 位作者 Xinhui Ji Zhiguo Wang 《Defence Technology(防务技术)》 2025年第5期15-31,共17页
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t... Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios. 展开更多
关键词 Heterogeneous federated learning model heterogeneity Data heterogeneity Contrastive learning
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
3
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON Machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
Machine learning model comparison and ensemble for predicting different morphological fractions of heavy metal elements in tailings and mine waste
4
作者 FENG Yu-xin HU Tao +4 位作者 ZHOU Na-na ZHOU Min BARKHORDARI Mohammad Sadegh LI Ke-chao QI Chong-chong 《Journal of Central South University》 2025年第9期3557-3573,共17页
Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological... Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological fractions of heavy metals and metalloids(HMMs)in TMWs is key to evaluating their leaching potential into the environment;however,traditional experiments are time-consuming and labor-intensive.In this study,10 machine learning(ML)algorithms were used and compared for rapidly predicting the morphological fractions of HMMs in TMWs.A dataset comprising 2376 data points was used,with mineral composition,elemental properties,and total concentration used as inputs and concentration of morphological fraction used as output.After grid search optimization,the extra tree model performed the best,achieving coefficient of determination(R2)of 0.946 and 0.942 on the validation and test sets,respectively.Electronegativity was found to have the greatest impact on the morphological fraction.The models’performance was enhanced by applying an ensemble method to the top three optimal ML models,including gradient boosting decision tree,extra trees and categorical boosting.Overall,the proposed framework can accurately predict the concentrations of different morphological fractions of HMMs in TMWs.This approach can minimize detection time,aid in the safe management and recovery of TMWs. 展开更多
关键词 tailings and mine waste morphological fractions model comparison machine learning model ensemble
在线阅读 下载PDF
FedCLCC:A personalized federated learning algorithm for edge cloud collaboration based on contrastive learning and conditional computing
5
作者 Kangning Yin Xinhui Ji +1 位作者 Yan Wang Zhiguo Wang 《Defence Technology(防务技术)》 2025年第1期80-93,共14页
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ... Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms. 展开更多
关键词 Federated learning Statistical heterogeneity Personalized model Conditional computing Contrastive learning
在线阅读 下载PDF
Tomato detection method using domain adaptive learning for dense planting environments 被引量:2
6
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS modelS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
在线阅读 下载PDF
Tunnel face reliability analysis using active learning Kriging model——Case of a two-layer soils 被引量:4
7
作者 LI Tian-zheng DIAS Daniel 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1735-1746,共12页
This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of lim... This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design. 展开更多
关键词 reliability analysis tunnel face Kriging model active learning function failure probability
在线阅读 下载PDF
Low rank optimization for efficient deep learning:making a balance between compact architecture and fast training
8
作者 OU Xinwei CHEN Zhangxin +1 位作者 ZHU Ce LIU Yipeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期509-531,F0002,共24页
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices... Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training. 展开更多
关键词 model compression subspace training effective rank low rank tensor optimization efficient deep learning
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
9
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means,support vector regression and particle swarm optimization
10
作者 CAO Yin LI Lijing LIANG Sheng 《Journal of Systems Engineering and Electronics》 2025年第2期510-522,共13页
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely... As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields. 展开更多
关键词 fiber optic gyroscope(FOG) temperature error com-pensation composite model machine learning CLUSTERING regression.
在线阅读 下载PDF
网络环境下的大学英语“Blending Learning”教学模式探讨 被引量:24
11
作者 李蕊丽 胡鸣焕 《现代电子技术》 2006年第16期94-96,99,共4页
Blending Learning即一种把传统课堂教学和网络教学相结合的混合式教学模式。但混合式教学不是仅把信息技术作为辅助教或辅助学的工具,而是强调利用信息技术营造一种全新的教学环境。结合本校的教学改革,讨论了如何在大学英语教学中实... Blending Learning即一种把传统课堂教学和网络教学相结合的混合式教学模式。但混合式教学不是仅把信息技术作为辅助教或辅助学的工具,而是强调利用信息技术营造一种全新的教学环境。结合本校的教学改革,讨论了如何在大学英语教学中实现传统教学和网络学习的Blending,以及采用Blending Learning所取得的教学效果和这种教学模式的优势。 展开更多
关键词 英语教学 混合式教学模式 混合式学习 网络教学
在线阅读 下载PDF
E-Learning中情绪认知个性化学生模型的研究 被引量:4
12
作者 王万森 龚文 《计算机应用研究》 CSCD 北大核心 2011年第11期4174-4176,4183,共4页
为了提高E-Learning情绪教学的适应性和教学效果,针对传统学生模型的不足,引入人格、学习情绪及学习风格。通过OCC三维情绪空间描述学习情绪和丹尼尔.沙博人格划分理论进行情绪调节,通过美国心理学家布鲁姆的认知理论描述学生的认知能力... 为了提高E-Learning情绪教学的适应性和教学效果,针对传统学生模型的不足,引入人格、学习情绪及学习风格。通过OCC三维情绪空间描述学习情绪和丹尼尔.沙博人格划分理论进行情绪调节,通过美国心理学家布鲁姆的认知理论描述学生的认知能力,通过Felder-Silverman学习风格并结合支持向量机技术描述学习偏好的个性化特征。将情绪、认知、学习风格相结合构建一个完善的适合E-Learning教学的学生模型。通过将此学生模型应用到E-Learning教学中,不仅可以解决网络教学系统的情感缺失,而且大大提高了实用性、智能性和个性化。 展开更多
关键词 学生模型 学习情绪 认知能力 学习风格 支持向量机
在线阅读 下载PDF
基于知识社区的e-learning模式构建 被引量:3
13
作者 王知津 谢瑶 《图书情报知识》 CSSCI 北大核心 2008年第5期38-42,共5页
知识社区作为知识管理的核心组成,已成为推动知识交流、传递、共享和创新的催化剂。本文论述了e-learning和知识社区的概念与特征,探讨了网络环境下基于知识社区的e-learning,提出了基于知识社区的e-learning模式的构建。
关键词 知识社区 e—learning模型 知识管理 学习型组织
在线阅读 下载PDF
E-Learning系统中课程知识本体的构建与实现 被引量:5
14
作者 刘光蓉 杜小勇 +1 位作者 王琰 崔建伟 《情报学报》 CSSCI 北大核心 2009年第4期499-508,共10页
本文提出了一套指导E-Learning系统中课程知识本体构建的原理和规则。以C语言程序设计课程为例,按照教学步骤和教学规律,通过对课程知识点中核心概念集的抽取及其概念之间关系的建立,形成了C语言程序设计课程知识本体,该本体由183个概念... 本文提出了一套指导E-Learning系统中课程知识本体构建的原理和规则。以C语言程序设计课程为例,按照教学步骤和教学规律,通过对课程知识点中核心概念集的抽取及其概念之间关系的建立,形成了C语言程序设计课程知识本体,该本体由183个概念、130个上下位关系、48个属性组成。采用标准的OWL本体描述语言对其进行定义和描述,在Prot(?)g(?)中能正确运行,表明建立的本体模型是正确合理的。课程知识本体的成功构建为基于本体的E-Learning系统奠定了基础。最后,介绍了以课程知识本体为内核开发的E-Learning系统,该系统主要实现了课程知识本体的管理及基于本体的可视化资源检索。 展开更多
关键词 E-learning 知识本体 建模元语 知识粒度 OWL
在线阅读 下载PDF
基于CT扫描和3D打印可视化技术构建石油工程Solid Learning教学新模式 被引量:5
15
作者 杨永飞 孙致学 +3 位作者 张凯 李爱芬 孙仁远 谷建伟 《实验技术与管理》 CAS 北大核心 2015年第9期64-67,共4页
以培养具有创新意识和创新能力的高素质人才为目标,构建石油工程专业Solid Learning教学模式。首先基于CT扫描建立真实的数字岩心模型,利用优化提取算法提取其孔隙网络模型,然后利用3D打印技术建立传统方法不可见的真实模型,最后将打印... 以培养具有创新意识和创新能力的高素质人才为目标,构建石油工程专业Solid Learning教学模式。首先基于CT扫描建立真实的数字岩心模型,利用优化提取算法提取其孔隙网络模型,然后利用3D打印技术建立传统方法不可见的真实模型,最后将打印出的实物模型应用于实验实践教学。应用效果表明,Solid Learning教学模式使地下原本不可见的油藏模型可视化,极大地提高了学生学习的积极性和探索意识,提高了实验及课堂教学的质量,为培养创新性高素质人才奠定了良好的基础,是一种极具推广应用前景的教学新模式。 展开更多
关键词 SOLID learning教学模式 石油工程 CT扫描 3D打印 可视化模型
在线阅读 下载PDF
基于XML技术的自测练习子系统在e-Learning中的应用与实现 被引量:2
16
作者 张兴中 余雪丽 +1 位作者 高保禄 吕俊峰 《计算机工程与应用》 CSCD 北大核心 2003年第11期170-172,178,共4页
该文在介绍e-Learning的概念及意义的基础上,引出了一种基于Web的实时交互式计算机网络课程e-Learn-ing系统。全文介绍了构成e-Learning系统的重要模块自测练习子系统的功能特点及实现方案,分析了XML的技术特征,并详细介绍了知识内容结... 该文在介绍e-Learning的概念及意义的基础上,引出了一种基于Web的实时交互式计算机网络课程e-Learn-ing系统。全文介绍了构成e-Learning系统的重要模块自测练习子系统的功能特点及实现方案,分析了XML的技术特征,并详细介绍了知识内容结构模型的构建,包括:知识模型的分层表示、知识点结构定义、XML-DTD文件定义以及测试内容结构的定义。最后介绍了系统的使用与安全问题。 展开更多
关键词 远程教育 E-learning 内容结构模型 CSM 扩展标记语言 XML
在线阅读 下载PDF
基于Q-learning的虚拟网络功能调度方法 被引量:35
17
作者 王晓雷 陈云杰 +1 位作者 王琛 牛犇 《计算机工程》 CAS CSCD 北大核心 2019年第2期64-69,共6页
针对现有调度方法多数未考虑虚拟网络功能在实例化过程中的虚拟机选择问题,提出一种新的虚拟网络调度方法。建立基于马尔科夫决策过程的虚拟网络功能调度模型,以最小化所有服务功能链的服务延迟时间。通过设计基于Q-learning的动态调度... 针对现有调度方法多数未考虑虚拟网络功能在实例化过程中的虚拟机选择问题,提出一种新的虚拟网络调度方法。建立基于马尔科夫决策过程的虚拟网络功能调度模型,以最小化所有服务功能链的服务延迟时间。通过设计基于Q-learning的动态调度算法,优化虚拟网络功能的调度顺序和虚拟机选择问题,实现最短网络功能虚拟化调度时间。仿真结果表明,与传统的随机虚拟机选择策略相比,该方法能够有效降低虚拟网络功能调度时间,特别是在大规模网络中调度时间可降低约40%。 展开更多
关键词 网络功能虚拟化 服务功能链 调度模型 马尔科夫决策过程 Q-学习
在线阅读 下载PDF
基于E-learning的ERP系统学习模型研究 被引量:1
18
作者 徐汉川 何霆 贾雨生 《计算机工程与设计》 CSCD 北大核心 2008年第8期1972-1975,1979,共5页
企业资源计划系统(ERP)是一个复杂的软件系统,具有功能模块众多、计划编制和数据流转关系复杂、体现的管理思想和方法多样等特点。针对传统ERP学习方法的不足,在分析ERP软件特点和复杂性基础上,基于E-learning理论和Agent技术提出一个ER... 企业资源计划系统(ERP)是一个复杂的软件系统,具有功能模块众多、计划编制和数据流转关系复杂、体现的管理思想和方法多样等特点。针对传统ERP学习方法的不足,在分析ERP软件特点和复杂性基础上,基于E-learning理论和Agent技术提出一个ERP系统学习模型—ERPLM学习模型,对模型的体系架构、各类学习信息的表示以及关键Agent的设计和实现进行了详细地分析和论述,并提出了一种基于模糊综合评判的面向目标的学习评价方法。 展开更多
关键词 企业资源计划 学习模型 数字化学习 智能体 模糊综合评判
在线阅读 下载PDF
Learning-by-doing教学模式在安全系统工程教学中的应用 被引量:10
19
作者 樊运晓 《中国安全科学学报》 CAS CSCD 2007年第7期89-92,共4页
安全系统工程课程是安全工程专业的专业基础课,其教学效果的好坏对后续课程的学习以及日后所从事的工作至关重要。因而该课程教学方法的运用选择值得深思。笔者分析了安全工程专业中安全系统工程课程的特点和教学中存在的问题,引用learn... 安全系统工程课程是安全工程专业的专业基础课,其教学效果的好坏对后续课程的学习以及日后所从事的工作至关重要。因而该课程教学方法的运用选择值得深思。笔者分析了安全工程专业中安全系统工程课程的特点和教学中存在的问题,引用learning-by-doing的教学模式并在教学中加以应用,提出"通过授课得到答案——学会一个解,通过案例讨论得到方法——学会一个方法,通过实践模拟学会学习——学会找到个方法,通过总结学会融会贯通"的安全系统工程教学模式,收到了较好的教学效果。 展开更多
关键词 安全工程 专业 安全系统工程 教学模式 learning—by—doing(做中学)
在线阅读 下载PDF
基于互信息和Just-in-Time优化的回声状态网络 被引量:7
20
作者 张衡 王河山 《郑州大学学报(工学版)》 CAS 北大核心 2017年第5期1-6,共6页
为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输... 为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输入伸缩参数进行调整;二是基于JIT优化的局部输出层,对ESN的隐层输出数据进行局部重新建模,从而提升ESN输出层的回归拟合精度.将MI-JIT-ESN应用于青霉素补料分批发酵过程建模.结果显示,MI-JIT优化方法能提高模型的适应性,并优于其他比较方法. 展开更多
关键词 回声状态网络 互信息 just-in-time 优化 建模 青霉素发酵
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部