随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但...随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但对路径长度与路径节点数量的优化方法仍有待研究。提出了一种对于强制跳点按功能性的分类方式,并基于这一分类对JPS+算法的预处理和搜索流程进行改进,在提高单次搜索扩展效率的同时,减少路径的长度与节点数。通过仿真地图实验与真实采样地图实验,验证了改进算法的有效性。对比发现:改进JPS+算法在仿真地图中,所求路径长度最大减少5.92%,路径节点数最大减少46.15%,算法用时最大减少25.58%;在真实采样地图中,所求路径长度平均减少2.48%,路径节点数平均减少10.71%,算法用时平均减少17.08%。展开更多
In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me n...In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me new methods are also put forward to improve optimization performance of genet ic algorithm, such as point-cast method and neighborhood search strategy around peak-points. The methods are used to deal with genetic operation besides of cr ossover and mutation, in order to obtain a global optimum solution and avoid GA ’s premature convergence. By means of many control rules and a peak-depot, the new algorithm carries out optimum search surrounding several peak-points. Alon g with evolution of individuals of population, the fitness of peak-points of pe ak-depot increases continually, and a global optimum solution can be obtained. The new algorithm searches around several peak-points, which increases the prob ability to obtain the global optimum solution to the best. By using some example s to test the modified genetic algorithm, the results indicate what we have done makes the modified genetic algorithm effectively to solve both of linear optimi zation problems and nonlinear optimization problems with restrictive functions.展开更多
针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅...针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅格修改了剪枝规则与跳点判断规则,再利用蜂窝栅格特点设计了新的启发式函数来提高搜索效率,通过找寻最远节点的节点更新规则来优化生成的轨迹。利用Matlab仿真平台验证算法的搜索效率和安全性,结果表明,相较于传统JPS算法,采用H-JPS算法进行路径规划能够完全消除危险节点,路径规划时间和长度分别缩短了41.9%和11.1%,显著提高了搜索效率。展开更多
针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地...针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。展开更多
光伏阵列P-U特性曲线在局部遮阴状态下呈现多峰状态,传统的最大功率追踪算法容易陷入局部最优状态。针对此问题,提出了一种基于改进麻雀搜索算法的最大功率点跟踪(maximum power point tracking,MPPT)方法。在麻雀搜索算法中引入遗传算...光伏阵列P-U特性曲线在局部遮阴状态下呈现多峰状态,传统的最大功率追踪算法容易陷入局部最优状态。针对此问题,提出了一种基于改进麻雀搜索算法的最大功率点跟踪(maximum power point tracking,MPPT)方法。在麻雀搜索算法中引入遗传算法和Lévy飞行策略,使算法的全局搜索能力得以增强,并且可以跳出局部最优解。在MATLAB/Simulink中建立仿真模型,并与粒子群优化算法和原始麻雀搜索算法进行比较。仿真结果表明,基于改进麻雀搜索算法的MPPT方法在不同光照条件下均显示出更高的效率和稳定性。展开更多
针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA...针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。展开更多
针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分...针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分析、分层、切片、投影得到二维点云轮廓。最后,提出单向双次最近邻点搜索算法对二维点云的轮廓进行有序提取,使用坐标解析法求解投影面的面积,累加各层面积与切片间隔的乘积得到最终的体积。试验结果表明,提出的第一主成分轴方向切片体积计算效果更好,且轮廓提取算法对比凸包提取法、双向最近邻搜索和改进最近邻搜索算法(improved nearest point search,INPS)算法更准确,效率更高,与Geomagic软件结果相比平均相对误差不超过0.3%,证明了算法的高效性和有效性。展开更多
针对传统全局路径规划中扩展节点多、寻路时间长等问题,提出一种基于JPS+(jump point search plus)算法的全局路径规划算法,旨在提高机器人在复杂环境的智能性、高效性的要求。首先引入了一种基于密度的判断障碍物角点规则,实现对于主...针对传统全局路径规划中扩展节点多、寻路时间长等问题,提出一种基于JPS+(jump point search plus)算法的全局路径规划算法,旨在提高机器人在复杂环境的智能性、高效性的要求。首先引入了一种基于密度的判断障碍物角点规则,实现对于主要跳点的识别数目,减少搜索路径过程中的可扩展节点,同时在路径求解过程中对目标跳点的判定规则进行了修改,最终实现了减少计算量、缩短计算时长的目标。为验证所提改进型JPS+算法的有效性,将A、JPS+算法在不同类型地图中与改进型JPS+算法进行了比较。仿真结果表明,改进型JPS+算法与A算法相比,在路径长度、寻路时间和扩展节点数量上都有明显改进;在生成相同路径的基础上,与传统JPS+算法相比,在障碍物占比33.25%的地图中搜索时间降低了7.58%,节点扩展数量减少了9.38%,能够满足移动机器人快速全局路径规划的要求。展开更多
通过构建正六边形栅格地图,并修改传统跳点搜索(jump point search,JPS)算法的邻居剪枝、强制邻居判断的规则和JPS策略,提出一种新的正六边形栅格JPS算法,并且利用该算法解决智能体在环境地图存在障碍物时的路径规划问题。利用Pycharm...通过构建正六边形栅格地图,并修改传统跳点搜索(jump point search,JPS)算法的邻居剪枝、强制邻居判断的规则和JPS策略,提出一种新的正六边形栅格JPS算法,并且利用该算法解决智能体在环境地图存在障碍物时的路径规划问题。利用Pycharm平台进行仿真研究,并与传统正方形栅格A*算法和JPS算法进行路径规划仿真比较,结果表明正六边形栅格JPS算法可更好地实现路径规划,所规划出的路径可避免穿越墙角的不安全行为、减少转向次数,且该算法可减少路径规划时间,提高了路径规划的质量和效率。展开更多
文摘随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但对路径长度与路径节点数量的优化方法仍有待研究。提出了一种对于强制跳点按功能性的分类方式,并基于这一分类对JPS+算法的预处理和搜索流程进行改进,在提高单次搜索扩展效率的同时,减少路径的长度与节点数。通过仿真地图实验与真实采样地图实验,验证了改进算法的有效性。对比发现:改进JPS+算法在仿真地图中,所求路径长度最大减少5.92%,路径节点数最大减少46.15%,算法用时最大减少25.58%;在真实采样地图中,所求路径长度平均减少2.48%,路径节点数平均减少10.71%,算法用时平均减少17.08%。
文摘In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me new methods are also put forward to improve optimization performance of genet ic algorithm, such as point-cast method and neighborhood search strategy around peak-points. The methods are used to deal with genetic operation besides of cr ossover and mutation, in order to obtain a global optimum solution and avoid GA ’s premature convergence. By means of many control rules and a peak-depot, the new algorithm carries out optimum search surrounding several peak-points. Alon g with evolution of individuals of population, the fitness of peak-points of pe ak-depot increases continually, and a global optimum solution can be obtained. The new algorithm searches around several peak-points, which increases the prob ability to obtain the global optimum solution to the best. By using some example s to test the modified genetic algorithm, the results indicate what we have done makes the modified genetic algorithm effectively to solve both of linear optimi zation problems and nonlinear optimization problems with restrictive functions.
文摘针对跳点搜索算法(jump point search,JPS)在路径规划过程中出现的穿越墙角的不安全行为,提出了一种基于蜂窝栅格地图的跳点搜索算法(honeycomb raster map-JPS,H-JPS)。构建蜂窝栅格地图代替传统栅格地图,在JPS算法的基础上结合蜂窝栅格修改了剪枝规则与跳点判断规则,再利用蜂窝栅格特点设计了新的启发式函数来提高搜索效率,通过找寻最远节点的节点更新规则来优化生成的轨迹。利用Matlab仿真平台验证算法的搜索效率和安全性,结果表明,相较于传统JPS算法,采用H-JPS算法进行路径规划能够完全消除危险节点,路径规划时间和长度分别缩短了41.9%和11.1%,显著提高了搜索效率。
文摘针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。
文摘光伏阵列P-U特性曲线在局部遮阴状态下呈现多峰状态,传统的最大功率追踪算法容易陷入局部最优状态。针对此问题,提出了一种基于改进麻雀搜索算法的最大功率点跟踪(maximum power point tracking,MPPT)方法。在麻雀搜索算法中引入遗传算法和Lévy飞行策略,使算法的全局搜索能力得以增强,并且可以跳出局部最优解。在MATLAB/Simulink中建立仿真模型,并与粒子群优化算法和原始麻雀搜索算法进行比较。仿真结果表明,基于改进麻雀搜索算法的MPPT方法在不同光照条件下均显示出更高的效率和稳定性。
文摘针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。
文摘针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分析、分层、切片、投影得到二维点云轮廓。最后,提出单向双次最近邻点搜索算法对二维点云的轮廓进行有序提取,使用坐标解析法求解投影面的面积,累加各层面积与切片间隔的乘积得到最终的体积。试验结果表明,提出的第一主成分轴方向切片体积计算效果更好,且轮廓提取算法对比凸包提取法、双向最近邻搜索和改进最近邻搜索算法(improved nearest point search,INPS)算法更准确,效率更高,与Geomagic软件结果相比平均相对误差不超过0.3%,证明了算法的高效性和有效性。
文摘针对传统全局路径规划中扩展节点多、寻路时间长等问题,提出一种基于JPS+(jump point search plus)算法的全局路径规划算法,旨在提高机器人在复杂环境的智能性、高效性的要求。首先引入了一种基于密度的判断障碍物角点规则,实现对于主要跳点的识别数目,减少搜索路径过程中的可扩展节点,同时在路径求解过程中对目标跳点的判定规则进行了修改,最终实现了减少计算量、缩短计算时长的目标。为验证所提改进型JPS+算法的有效性,将A、JPS+算法在不同类型地图中与改进型JPS+算法进行了比较。仿真结果表明,改进型JPS+算法与A算法相比,在路径长度、寻路时间和扩展节点数量上都有明显改进;在生成相同路径的基础上,与传统JPS+算法相比,在障碍物占比33.25%的地图中搜索时间降低了7.58%,节点扩展数量减少了9.38%,能够满足移动机器人快速全局路径规划的要求。
文摘通过构建正六边形栅格地图,并修改传统跳点搜索(jump point search,JPS)算法的邻居剪枝、强制邻居判断的规则和JPS策略,提出一种新的正六边形栅格JPS算法,并且利用该算法解决智能体在环境地图存在障碍物时的路径规划问题。利用Pycharm平台进行仿真研究,并与传统正方形栅格A*算法和JPS算法进行路径规划仿真比较,结果表明正六边形栅格JPS算法可更好地实现路径规划,所规划出的路径可避免穿越墙角的不安全行为、减少转向次数,且该算法可减少路径规划时间,提高了路径规划的质量和效率。