期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于关系提示的单模块单步骤实体关系抽取方法研究
1
作者 刘辉 张智 王启源 《西安交通大学学报》 北大核心 2025年第3期222-234,共13页
针对现有关系三元组抽取方法由于忽略关系本身的关系语义信息以及三元组中元素的相互依赖和不可分性所导致的抽取效果不佳问题,提出了一种基于关系提示的实体关系抽取方法。在构建单模块单步关系三重抽取模型(RPSS)的基础上,考虑不同层... 针对现有关系三元组抽取方法由于忽略关系本身的关系语义信息以及三元组中元素的相互依赖和不可分性所导致的抽取效果不佳问题,提出了一种基于关系提示的实体关系抽取方法。在构建单模块单步关系三重抽取模型(RPSS)的基础上,考虑不同层次的关系语义信息和符号级和特征级的关系提示信息,对实体和关系提示符进行联合编码,得到统一的全局表示;同时通过注意力机制挖掘不同嵌入之间的深层关联,构建三重交互矩阵,可在一个步骤中直接从单个模块中提取所有三元组。结果表明:所提方法在NYT、WebNLG两个基准数据集上实现了最佳的表现,F_(1)分别达到了93.3%和94.9%。 展开更多
关键词 实体关系抽取 注意力机制 联合编码
在线阅读 下载PDF
基于实体关系联合抽取的装备RCMA知识图谱构建
2
作者 李云凯 任占勇 +1 位作者 贾治宇 苗强 《兵器装备工程学报》 北大核心 2025年第5期57-66,共10页
现有装备保障性分析工作还存在着一些挑战,例如对客观数据和历史数据利用不足、数据知识有效表征化程度不高以及无法进行知识推送等问题。而知识图谱是利用数据表示现实世界实体与关系的信息网络,是解决上述问题的有效方案。为了实现数... 现有装备保障性分析工作还存在着一些挑战,例如对客观数据和历史数据利用不足、数据知识有效表征化程度不高以及无法进行知识推送等问题。而知识图谱是利用数据表示现实世界实体与关系的信息网络,是解决上述问题的有效方案。为了实现数据驱动的装备以可靠性为中心的维修分析(RCMA),提出一种可以支撑保障性分析的装备RCMA知识图谱构建方法。首先,梳理装备RCMA流程,分析可以用于知识图谱的装备RCMA实体与关系,实现知识图谱的模式层构建。其次,通过单步骤-单模型的实体关系联合抽取方法,使用细粒度三分类模型OneRel从装备RCMA相关文本数据中抽取出三元组,实现知识图谱的数据层构建。最后,选用Neo4j图数据库进行存储,完成了装备RCMA知识图谱的构建。针对装备RCMA相关文本数据进行知识抽取实验,实验结果表明,使用实体关系联合模型的知识抽取在精确率上达到91%,比传统流水线方法用到的知识抽取模型精确率更高,且在构建流程上实现了优化。 展开更多
关键词 RCMA 保障性分析 知识图谱 实体关系联合抽取 深度学习
在线阅读 下载PDF
基于片段排列和多头选择的实体识别与关系抽取联合模型
3
作者 陈雷 郑小盈 +1 位作者 祝永新 封松林 《计算机应用与软件》 北大核心 2025年第5期238-246,共9页
针对传统的信息抽取方法存在实体重叠、误差积累和依赖关系缺失等问题,该文提出一种基于片段排列和多头选择的实体识别与关系抽取联合模型。通过共享编码层来建立实体识别与关系抽取之间的依赖;通过片段排列的方式在span的层面解决实体... 针对传统的信息抽取方法存在实体重叠、误差积累和依赖关系缺失等问题,该文提出一种基于片段排列和多头选择的实体识别与关系抽取联合模型。通过共享编码层来建立实体识别与关系抽取之间的依赖;通过片段排列的方式在span的层面解决实体重叠问题;使用多头选择机制来预测实体之间的关系,并加入对抗训练,通过辅助损失函数进行约束。通过消融实验和基于不同权重损失函数的实验,找到了效果最好的参数。该模型在中文数据集DuIE 2.0上取得了F1值0.829的效果,相对于效果最好的基线模型提升2.24%。 展开更多
关键词 实体关系抽取 联合抽取 多头选择 片段排列模型
在线阅读 下载PDF
基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法 被引量:1
4
作者 李斌 林民 +3 位作者 斯日古楞 高颖杰 王玉荣 张树钧 《计算机应用》 北大核心 2025年第1期75-81,共7页
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取... 基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。 展开更多
关键词 实体关系联合抽取 全局指针网络 提示学习 预训练语言模型 中文古籍
在线阅读 下载PDF
基于深度学习的医学实体和关系联合抽取研究综述 被引量:1
5
作者 叶青 张晓凤 +1 位作者 彭琳 程春雷 《计算机工程与应用》 CSCD 北大核心 2024年第24期65-78,共14页
命名实体识别与关系抽取作为医学领域信息抽取的核心任务,能够从非结构化或半结构化的文本中自动识别实体边界、实体类型以及实体之间的关系。不仅能够促进知识的发现与整合,应用于临床决策,加强药物的发现和再利用,还可以助力公共卫生... 命名实体识别与关系抽取作为医学领域信息抽取的核心任务,能够从非结构化或半结构化的文本中自动识别实体边界、实体类型以及实体之间的关系。不仅能够促进知识的发现与整合,应用于临床决策,加强药物的发现和再利用,还可以助力公共卫生监测和疾病预防。回顾了实体识别和关系抽取的发展历程,介绍了常用评价指标和医学领域实体关系联合抽取数据集,指出目前联合抽取领域存在医学文本结构比较复杂、实体关系重叠句子抽取率低等问题。根据这些问题,进一步探讨了基于深度学习的实体关系联合抽取方法在医学领域上的应用。这些方法根据模型解码的方式主要分为基于共享参数的联合抽取模型和基于联合解码的联合抽取模型,从问题解决角度对不同的模型的优缺点进行探讨分析和总结。讨论了医学领域实体关系抽取面临的挑战和未来的研究方向。 展开更多
关键词 医学文本 联合抽取 关系抽取 实体识别
在线阅读 下载PDF
基于平行交互注意力网络的中文电子病历实体及关系联合抽取 被引量:2
6
作者 李丽双 王泽昊 +1 位作者 秦雪洋 袁光辉 《中文信息学报》 CSCD 北大核心 2024年第6期108-118,共11页
基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性... 基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性,在多个标准的医学和通用数据集上取得最优结果;当前中文医学实体及关系标注数据集较少,该文基于中文电子病历构建了实体和关系抽取数据集(CEMRIE),与医学专家共同制定了语料标注规范,并基于该文所提出的模型实验得出基准结果。 展开更多
关键词 实体关系联合抽取 双向特征交互模块 自注意力机制 中文电子病历 数据集标注与构建
在线阅读 下载PDF
基于深度字词融合的小麦种质信息实体关系联合抽取
7
作者 刘合兵 贾笑笑 +3 位作者 时雷 熊蜀峰 马新明 席磊 《计算机工程与设计》 北大核心 2024年第4期1079-1086,共8页
为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based ... 为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based on deep character and word fusion)。模型编码层通过深度字词融合和上下文语义特征融合,提高密集实体特征识别能力;模型三元组抽取层建立层叠指针网络,提高重叠关系的提取能力。在小麦种质数据集和公开数据集上的一系列对比实验结果表明,WGIE-DCWF模型能够有效提高小麦种质数据实体关系联合抽取效果,同时拥有较好的泛化性,可以为小麦种质信息知识库构建提供技术支撑。 展开更多
关键词 小麦种质信息 字词融合 实体关系抽取 联合抽取 层叠指针网络 实体识别 关系抽取
在线阅读 下载PDF
融合限定关系和交互信息的实体关系联合抽取模型
8
作者 唐瑞雪 秦永彬 陈艳平 《中文信息学报》 CSCD 北大核心 2024年第10期106-116,共11页
实体关系抽取作为信息抽取领域的核心任务,旨在从非结构化文本中自动抽取所有的关系三元组。现有研究较难处理句子中关系重叠的情况,存在识别冗余和语义依赖不足的问题。鉴于此,该文提出一种融合限定关系和交互信息的实体关系联合抽取... 实体关系抽取作为信息抽取领域的核心任务,旨在从非结构化文本中自动抽取所有的关系三元组。现有研究较难处理句子中关系重叠的情况,存在识别冗余和语义依赖不足的问题。鉴于此,该文提出一种融合限定关系和交互信息的实体关系联合抽取模型。该模型首先对句子进行关系预测,构成限定关系集。其次,利用限定关系分别地预测可能存在关系的头实体和尾实体,解决关系重叠问题,同时缓解冗余识别。为了加强句子中实体与关系的交互,利用注意力机制强化句子中关系有关信息,通过双仿射和卷积操作来构建评分矩阵。最后,通过评分矩阵对候选三元组进行校正,确定最终的关系三元组。实验结果表明,该模型在NYT和WebNLG数据集上F1值分别达到92.0%和88.7%,相比于所对比的基线模型F1值分别提高了2.8%和1.0%,验证了模型的有效性。 展开更多
关键词 实体关系抽取 联合抽取 重叠关系 限定关系 交互信息
在线阅读 下载PDF
基于潜在关系的实体关系联合抽取模型
9
作者 彭晏飞 张睿思 +1 位作者 王瑞华 郭家隆 《计算机科学与探索》 CSCD 北大核心 2024年第4期1047-1056,共10页
实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计... 实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计一种新的解码方式来减少预测过程中关系、实体和三元组的冗余信息,从整体上分为提取潜在实体对、解码关系两步来完成从句子中抽取三元组的任务。首先通过潜在实体对提取器预测实体间是否存在潜在关系,同时筛选出置信度高的实体对作为最终的潜在实体对;其次将关系解码视作多标签二分类任务,通过关系解码器预测每个潜在实体对之间全部关系的置信度;最后通过置信度确定关系数量和类型,以完成三元组的抽取任务。在两个通用数据集上的实验结果表明,所提模型相比基线模型在准确率和F1指标上的效果更好,验证了所提模型的有效性,消融实验也证明了模型内部各部分的有效性。 展开更多
关键词 实体关系联合抽取 潜在关系 潜在实体对 多标签二分类任务 信息冗余
在线阅读 下载PDF
基于异构图注意力网络的药物不良反应实体关系联合抽取研究 被引量:3
10
作者 仲雨乐 韩普 许鑫 《现代情报》 CSSCI 北大核心 2024年第9期71-81,共11页
[目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联... [目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联合抽取模型MF-HGAT。[方法/过程]首先通过BERT预训练进行外部医学语料资源的知识迁移,实现多语义特征融合;其次将关系信息作为先验知识引入为异构图节点,以避免提取语义无关实体;然后通过迭代融合异构图注意力网络消息传递机制增强字符与关系节点表示;最后在节点表示更新后抽取药物不良反应实体关系。[结果/结论]在自构建药物不良反应数据集上进行实验,发现融入关系信息和外部医疗健康领域知识的MF-HGAT联合抽取F1值达到了92.75%,较主流模型CasRel提升了5.29%。研究结果表明,MF-HGAT模型通过异构图注意力网络融合字符与关系节点语义,可有效解决药物不良反应实体关系重叠问题,对药物不良反应知识发现具有重要意义。 展开更多
关键词 异构图注意力网络 实体关系联合抽取 药物不良反应 关系重叠 知识发现
在线阅读 下载PDF
面向电力知识图谱构建的重叠实体关系联合抽取方法 被引量:3
11
作者 束嘉伟 杨挺 +1 位作者 耿毅男 于洁 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期4912-4922,I0010,I0011,共13页
作为构建电力知识图谱的关键步骤,知识抽取可以从海量非结构化电力文本中准确抽取出实体和关系。但是,传统流水线式方法存在识别的错误信息后向传递、实体识别和关系抽取任务割裂以及易产生冗余信息的问题,进而导致抽取准确率低、抽取... 作为构建电力知识图谱的关键步骤,知识抽取可以从海量非结构化电力文本中准确抽取出实体和关系。但是,传统流水线式方法存在识别的错误信息后向传递、实体识别和关系抽取任务割裂以及易产生冗余信息的问题,进而导致抽取准确率低、抽取信息不全面,最终影响知识图谱的准确构建。针对上述问题,提出面向电力知识图谱构建的重叠实体关系联合抽取方法,通过改进的序列标注方案进行联合抽取,构建了电力领域专属预训练PowerRoberta模型,并增加对抗训练,提高了模型抽取电力知识的准确度和对陌生信息的预测能力。最后,以实际变电站巡检数据为例进行了实验分析与配电知识图谱可视化构建,结果表明所提出的联合抽取方法提升了知识抽取的准确率,准确率达到91.67%,可有效支撑配电网智能信息检索、辅助决策高级应用。 展开更多
关键词 自然语言处理 电力知识图谱 知识抽取 实体关系联合抽取 序列标注 关系重叠
在线阅读 下载PDF
基于实体对注意力机制的实体关系联合抽取模型 被引量:1
12
作者 朱继召 赵一霖 +2 位作者 张家鑫 黄友澎 范纯龙 《中文信息学报》 CSCD 北大核心 2024年第2期99-108,共10页
实体关系抽取是实现海量文本数据知识化、自动构建大规模知识图谱的关键技术。考虑到头尾实体信息对关系抽取有重要影响,该文采用注意力机制将实体对信息融合到关系抽取过程中,提出了基于实体对注意力机制的实体关系联合抽取模型(EPSA)... 实体关系抽取是实现海量文本数据知识化、自动构建大规模知识图谱的关键技术。考虑到头尾实体信息对关系抽取有重要影响,该文采用注意力机制将实体对信息融合到关系抽取过程中,提出了基于实体对注意力机制的实体关系联合抽取模型(EPSA)。首先,使用双向长短时记忆网络(Bi-LSTM)结合条件随机场(CRF)完成实体的识别;其次,将抽取的实体配对,信息融合成统一的嵌入式表示形式,用于计算句子中各词的注意力值;然后,使用基于实体对注意力机制的句子编码模块得到句子表示,再利用显式融合实体对的信息得到增强型句子表示;最后,通过分类方式完成实体关系的抽取。在公开数据集NYT和WebNLG上对提出的EPSA模型进行评估,实现结果表明,与目前主流联合抽取模型相比,EPSA模型在F_(1)值上均得到提升,分别达到84.5%和88.5%,并解决了单一实体重叠问题。 展开更多
关键词 知识图谱 注意力机制 实体关系联合抽取
在线阅读 下载PDF
DE-AA:基于词对距离嵌入和轴向注意力机制的实体关系联合抽取模型 被引量:1
13
作者 张梦赢 沈海龙 《计算机科学》 CSCD 北大核心 2024年第12期234-241,共8页
实体关系联合抽取为知识图谱的构建提供了关键的技术支持,而重叠关系问题一直都是联合抽取模型研究的重点。现有的方法大多采用多步骤的建模方法,虽然在解决重叠关系问题上取得了很好的效果,但产生了曝光偏差问题。为同时解决重叠关系... 实体关系联合抽取为知识图谱的构建提供了关键的技术支持,而重叠关系问题一直都是联合抽取模型研究的重点。现有的方法大多采用多步骤的建模方法,虽然在解决重叠关系问题上取得了很好的效果,但产生了曝光偏差问题。为同时解决重叠关系和曝光偏差问题,提出了一种基于词对距离嵌入和轴向注意力机制的实体关系联合抽取方法(DE-AA)。首先,构建代表词对关系的表特征,加入词对距离特征信息优化其表示;其次,应用基于行注意力和列注意力的轴向注意力模型去增强表特征,在融合全局特征的同时能够降低计算复杂度;最后,将表特征映射到各关系空间中,生成特定关系下的词对关系表,并使用表格填充法为表中各项分配标签,以三重分类的方式进行三元组的抽取。在公开数据集NYT和WebNLG上评估了所提出的模型,实验结果表明其与其他基线模型相比取得了更好的性能,且在处理重叠关系或多重关系问题上优势显著。 展开更多
关键词 实体关系联合抽取 轴向注意力机制 词对距离嵌入 表格填充法
在线阅读 下载PDF
融合交互注意力网络的实体和关系联合抽取模型 被引量:1
14
作者 郝小芳 张超群 +1 位作者 李晓翔 王大睿 《计算机工程与应用》 CSCD 北大核心 2024年第8期156-164,共9页
实体关系三元组的抽取效果直接影响后期知识图谱构建的质量,而传统流水线式和联合式抽取的模型,并没有对句子级别和关系级别的语义特征进行有效建模,从而导致模型性能的缺失。为此,提出一种融合句子级别和关系级别的交互注意力网络的实... 实体关系三元组的抽取效果直接影响后期知识图谱构建的质量,而传统流水线式和联合式抽取的模型,并没有对句子级别和关系级别的语义特征进行有效建模,从而导致模型性能的缺失。为此,提出一种融合句子级别和关系级别的交互注意力网络的实体和关系联合抽取模型RSIAN,该模型通过交互注意力网络来学习句子级别和关系级别的高阶语义关联,增强句子和关系之间的交互,辅助模型进行抽取决策。在构建的中文旅游数据集(TDDS)的Precision、Recall和F1值分别为0.872、0.760和0.812,其性能均优于其他对比模型;为了进一步验证该模型在英文联合抽取上的性能,在公开英文数据集NYT和Webnlg上进行实验,该模型的F1值相比基线模型RSAN模型分别提高了0.014和0.013,并且该模型在重叠三元组的分析实验也均取得了优于基线模型的性能且更稳定。 展开更多
关键词 交互注意力网络 句子级别 关系级别 实体和关系联合抽取 注意力机制 重叠三元组
在线阅读 下载PDF
融合实体语义的实体关系抽取联合解码
15
作者 张鑫 张思佳 《现代电子技术》 北大核心 2024年第14期41-45,共5页
针对复杂语境中存在多义词或上下文联系不强的实体,导致模型难以正确识别其关系的问题,提出一种基于BERT和联合解码的实体关系抽取模型。该模型首先采用BERT对实体进行语义编码,提取出实体的上下文信息;然后,利用自注意力机制标记出头实... 针对复杂语境中存在多义词或上下文联系不强的实体,导致模型难以正确识别其关系的问题,提出一种基于BERT和联合解码的实体关系抽取模型。该模型首先采用BERT对实体进行语义编码,提取出实体的上下文信息;然后,利用自注意力机制标记出头实体,并对尾实体进行预测;最后,设计联合解码机制,结合实体语义信息和关系抽取任务进行联合解码。实验结果表明,与基准模型相比,所提模型在纽约时报(NYT)数据集和WebNLG数据集上的准确率和F1值均有所提高,能够有效地提高实体关系提取的准确性。 展开更多
关键词 实体关系抽取 实体语义 BERT 联合编码 自注意力机制 知识图谱
在线阅读 下载PDF
基于多头自注意力机制和对抗训练的实体关系联合抽取 被引量:1
16
作者 甘雨金 李红军 +3 位作者 唐小川 王子怡 甘晨灼 胡正浩 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期513-521,共9页
实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对... 实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对抗训练的方法进行实体关系的抽取。该方法利用多头自注意力机制捕获潜在语义特征,以提升模型对上下文语义信息的感知能力;将对抗训练引入模型的训练阶段,以增强模型的泛化能力和鲁棒性。实验结果表明:与现有主流模型对比,提出的模型在NYT和WebNLG两个公共数据集上都取得了更优的F 1值,在处理实体关系重叠问题以及不定数量三元组抽取上都能保持稳定的性能表现,验证了模型的有效性。 展开更多
关键词 实体关系联合抽取 对抗训练 多头自注意力 知识图谱
在线阅读 下载PDF
基于双标注框架的实体关系联合抽取
17
作者 曾碧卿 蔡剑 李砚龙 《计算机工程与设计》 北大核心 2024年第6期1888-1895,共8页
实体关系抽取有流水线和联合抽取两种,联合抽取能更有效地抽取实体关系,流水线的适应能力更灵活。为解决实体关系抽取中的关系重叠问题,提出一种双标注实体关系抽取框架。使用联合解码的方式抽取自然文本中的主体实体,使用流水线方式抽... 实体关系抽取有流水线和联合抽取两种,联合抽取能更有效地抽取实体关系,流水线的适应能力更灵活。为解决实体关系抽取中的关系重叠问题,提出一种双标注实体关系抽取框架。使用联合解码的方式抽取自然文本中的主体实体,使用流水线方式抽取出客体实体。使用联合解码保证抽取精度的同时继承流水线的灵活性。所提模型在信息抽取数据集DUIE和远程监督数据集NYT上进行实验,其结果表明,该模型与基线模型相比具有竞争力。 展开更多
关键词 实体关系抽取 序列标注 联合关系抽取 关系重叠 信息抽取 注意力机制 自然语言处理
在线阅读 下载PDF
基于深度学习的实体关系联合抽取研究综述 被引量:21
18
作者 张仰森 刘帅康 +2 位作者 刘洋 任乐 辛永辉 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1093-1116,共24页
实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构... 实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构化文本语句中识别实体边界和类型.然后,将该命名实体识别器识别的实体与类型作为关系抽取任务中所用数据的标注.最后,通过关系抽取器得到两个实体之间的关系类别,进而组合成为结构化的实体关系三元组.命名实体识别任务存在的误差会影响后续的关系抽取任务的性能,这使得流水线方法具有错误累积问题.这是因为关系抽取任务中使用的标注数据来自于前面的命名实体识别任务,这会有一定的误差,进而影响关系抽取的结果质量.此外,流水线方法减弱了两个子任务之间的特征关联,这会出现冗余实体的问题.命名实体识别任务和关系抽取任务独立进行学习训练,导致这两个子任务间缺乏交互,使得文本信息没有得到充分利用,限制了流水线方法的性能瓶颈.由于非结构化文本信息没有得到充分利用,流水线方法在抽取实体间长依赖关系时具有一定局限性,很难达到联合抽取模型的性能指标.实际应用中,实体间往往存在多种关系,流水线方法无法充分使用全局文本信息,且命名实体识别会产生冗余实体,在抽取多元重叠关系时,该方法具有一定的局限性.因此,在构建高准确率实体关系抽取模型时,流水线方法具有欠缺之处.本文对实体关系联合抽取的研究发展全景进行了综述,简要阐明整数线性规划、卡片金字塔解析模型、概率图模型和结构化预测模型这四类基于特征工程的联合模型的共同缺点.本文聚焦基于深度学习的实体关系联合抽取技术,根据近年来实体关系联合抽取前沿研究成果,总结了实体关系联合抽取模型的主流构建方法.按照建模思想的特点总结为三种建模方法:多模块-多步骤、多模块-单步骤以及单模块-单步骤.多模块-多步骤建模方法主要包含实体域映射关系域、关系域映射实体域和头实体域映射关系-尾实体域这三种类别.这三类模型的共同特点都是将三元组的提取过程分为多个模块,通过共享参数的方式整合各个模块,逐步迭代得到三元组.这种方法推动联合模型性能提升,初步解决了流水线方法存在的问题.但每个步骤使用独立的解码算法,导致解码误差累积问题.且共享参数整合各个模块的冗余误差会互相影响预测性能,从而产生级联冗余问题.多模块-单步骤建模方法旨在构建一个最优化的联合解码算法,并对其求取最优解进而得到最优超参数.这种方法设计了简单精确的联合解码算法,并加强了多个子模块间的交互性,减弱了因为逐步迭代导致的解码误差和级联冗余对联合模型性能的影响.然而,模块的分离依然会产生冗余错误,具有一定局限性.单模块-单步骤建模方法可以直接从文本语句中抽取三元组,有效缓解了多模块-多步骤和多模块-单步骤建模方法的级联错误和实体冗余等问题.本文以前沿文献中具有代表性的联合模型为例,详细分析了这些模型的建模思路,剖析了各个模型的优缺点,将多个具有共同建模思路的经典模型进行归类,以阐述实体关系联合抽取模型的发展趋势.本文将单模块-单步骤建模方法的代表模型在公开基准数据集上的模型性能与多模块-多步骤和多模块-单步骤的代表模型性能进行对比分析,阐明实体关系联合抽取模型的建模思路正在从基于多模块-多步骤和多模块-单步骤的复杂建模方法,逐渐向单模块-单步骤的高效建模方法转变的客观趋势.最后,本文对三个实体关系联合抽取的研究方向进行了展望.当下主流的联合模型聚焦于限定域的实体关系抽取任务,对于开放域问题研究得不够.开放域实体关系联合抽取任务是未来的研究人员亟待解决的问题之一.在实际工业应用中,文本语料包含多元信息,如时序信息.而当前的实体关系联合抽取模型大多依据单一文本上下文信息进行特征抽取,从而忽略了时序信息.若融入像时序信息这样的多元信息或能进一步提升联合模型性能,这是未来一项具有重大意义的课题.此外,对于跨文本的实体关系联合抽取模型研究较少,这也是该领域未来的一个研究趋势.本文旨在建立一个完整的基于深度学习的实体关系联合抽取领域研究视图,以对相关领域研究者有所帮助. 展开更多
关键词 信息抽取 知识图谱 深度学习 实体关系联合抽取 流水线方法
在线阅读 下载PDF
基于跨度和特征融合的实体关系联合抽取模型 被引量:5
19
作者 廖涛 孙皓洁 张顺香 《计算机工程》 CAS CSCD 北大核心 2023年第6期107-114,共8页
实体关系联合抽取模型在实体关系抽取中具有重要作用,针对现有的实体关系联合抽取模型无法有效识别重叠关系中的实体关系三元组问题,提出一种新型的基于跨度和特征融合的实体关系联合抽取模型SFFM。将文本输入BERT预训练模型转变为词向... 实体关系联合抽取模型在实体关系抽取中具有重要作用,针对现有的实体关系联合抽取模型无法有效识别重叠关系中的实体关系三元组问题,提出一种新型的基于跨度和特征融合的实体关系联合抽取模型SFFM。将文本输入BERT预训练模型转变为词向量,根据跨度进行词向量划分形成跨度序列,并基于卷积神经网络过滤跨度序列中不包含实体的跨度序列,使用双向长短时记忆提取剩余跨度序列融合文本信息后的特征并通过Softmax回归实现实体识别,将文本中的实体和关系映射到不同的跨度序列中,当重叠关系中的实体和距离较远的实体之间存在关系时,按照跨度进行划分使可能存在关系的实体对划分到同一个跨度序列中,以更好地利用文本中的重叠关系。在此基础上,通过注意力机制获取跨度序列中的依赖关系,运用Softmax回归对跨度序列中的关系进行分类。实验结果表明,与基线模型相比,该模型在CoNLL04数据集上的微平均和宏平均分别提升了1.87和1.73个百分点,在SciERC数据集上的微平均提升了5.95个百分点。 展开更多
关键词 联合抽取 实体关系抽取 神经网络 跨度 特征融合
在线阅读 下载PDF
一种面向中医文本的实体关系深度学习联合抽取方法 被引量:7
20
作者 杨延云 杜建强 +2 位作者 聂斌 罗计根 贺佳 《计算机应用与软件》 北大核心 2023年第3期217-222,234,共7页
目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体... 目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体关系联合抽取转换成序列标注任务,词向量与字符向量并联拼接作为双向LSTM-CRF输入,利用双向LSTM神经网络强大的特征提取能力,以及CRF在序列标注上的突出优势,结合优化的抽取规则完成中医实体关系联合抽取。在中医语料库上的实验结果表明,实体关系联合抽取的F1值可以达到80.42%,与传统流水线方法以及其他方法相比,实验效果更佳。 展开更多
关键词 实体关系联合抽取 深度学习 字词向量拼接 中医文本
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部