Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-find...Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目...针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金This project was supported by the National Natural Science Foundation of China (60172033) the Excellent Ph.D.PaperAuthor Foundation of China (200036 ,200237) .
文摘Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
文摘针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。