Dual-frequency satellite positioning receivers are widely used because they can eliminate ionospheric delay and solve the full-circumference ambiguity quickly.However,in traditional dual-frequency receivers,the releva...Dual-frequency satellite positioning receivers are widely used because they can eliminate ionospheric delay and solve the full-circumference ambiguity quickly.However,in traditional dual-frequency receivers,the relevance of dual-frequency signals are not considered,and,with no improvement imposed to the tracking loop,two independent tracking loops are used to achieve the tracking of dual-frequency signals.In this paper,the Bei Dou dual-frequency signals joint tracking algorithm based on Kalman filter is proposed for the tracking of Bei Dou B1I and B3I dual-frequency signals.Taking the relevance of B1I and B3I signals into consideration,the algorithm adds a Kalman filter between the phase detector and carrier loop filter of the traditional dual-frequency independent tracking loop.The output results of the phase detectors of the B1I and B3I branches are then combined and filtered by the Kalman filter,and the results are input to the carrier loop filters of the corresponding branches.Proved by experiments,the algorithm not only enables the loop to enter a stable tracking state quickly,but also reduces the noise bandwidth of the two loop filters by about 10 Hz with the same tracking performance obtained.展开更多
车联网应用场景对无线通信在带宽、时延、可靠性方面提出了更高的需求,特别是车辆对车辆(Vehicle to Vehicle,V2V)场景。针对V2V高速移动场景,时/频域选择性衰落(双选衰落)和非平稳特性给信道估计带来的技术挑战,该文提出了一种基于基...车联网应用场景对无线通信在带宽、时延、可靠性方面提出了更高的需求,特别是车辆对车辆(Vehicle to Vehicle,V2V)场景。针对V2V高速移动场景,时/频域选择性衰落(双选衰落)和非平稳特性给信道估计带来的技术挑战,该文提出了一种基于基扩展模型(Basis Expansion Model,BEM)的UKF-RTSS(Unscented Kalman Filter-Rauch-Tung-Striebel Smoother)信道估计方法。该方法采用BEM拟合快时变信道,将信道参数的估计转化为基函数系数的估计;通过无迹卡尔曼滤波(UKF),联合估计数据处信道冲激响应与时域自相关系数,用于追踪快时变的信道响应。为了进一步提升信道估计的精度,引入RTSS对后向信道状态信息进行信道估计和插值,与UKF构成了“滤波和平滑”结构的UKF-RTSS联合估计器。系统仿真分析表明,在不同速度的快时变条件下,所提方法相比其他经典方法具有更高的信道估计精度和鲁棒性,特别适用于车联网下的无线通信场景。展开更多
基金supported by the National Natural Science Foundation of China (No.51505221)the Nanjing University of Aeronautics and Astronautics Graduate Innovation Base (Lab) Open Fund (No.kfjj20190312)
文摘Dual-frequency satellite positioning receivers are widely used because they can eliminate ionospheric delay and solve the full-circumference ambiguity quickly.However,in traditional dual-frequency receivers,the relevance of dual-frequency signals are not considered,and,with no improvement imposed to the tracking loop,two independent tracking loops are used to achieve the tracking of dual-frequency signals.In this paper,the Bei Dou dual-frequency signals joint tracking algorithm based on Kalman filter is proposed for the tracking of Bei Dou B1I and B3I dual-frequency signals.Taking the relevance of B1I and B3I signals into consideration,the algorithm adds a Kalman filter between the phase detector and carrier loop filter of the traditional dual-frequency independent tracking loop.The output results of the phase detectors of the B1I and B3I branches are then combined and filtered by the Kalman filter,and the results are input to the carrier loop filters of the corresponding branches.Proved by experiments,the algorithm not only enables the loop to enter a stable tracking state quickly,but also reduces the noise bandwidth of the two loop filters by about 10 Hz with the same tracking performance obtained.