Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's pa...New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.展开更多
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function...An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.展开更多
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ...The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.展开更多
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other ...By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.展开更多
In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark...In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.展开更多
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
文摘The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
文摘New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.
基金Project supported by the Natural Science Foundation of Henan Province of China (Grant No 0111050200) and the Science Foundation of Henan University of Science and Technology (Grant Nos 2004ZY040 and 2004ZD002).
文摘An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.
基金Project supported by the National Nature Science Foundation of China (Grant No 49894190) of the Chinese Academy of Science (Grant No KZCXI-sw-18), and Knowledge Innovation Program.
文摘The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)Supported by the Natural Science Foundation of Henan Province(0111050200)
文摘By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.
基金supported by the Key Program of Chinese Ministry of Education(Grant No.2011015)the Hundred Innovation Talents Supporting Project of Hebei Province of China(Grant No.CPRC014)
文摘In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.