For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes...For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.展开更多
点云配准是基于机器视觉进行工业复杂零件三维非接触精密测量的关键环节。为了提高点云配准的效率和准确性,提出一种基于改进法线计算的快速点特征直方图(Fast Point Feature Histograms, FPFH)特征描述子的点云配准方法。采用重心最近...点云配准是基于机器视觉进行工业复杂零件三维非接触精密测量的关键环节。为了提高点云配准的效率和准确性,提出一种基于改进法线计算的快速点特征直方图(Fast Point Feature Histograms, FPFH)特征描述子的点云配准方法。采用重心最近邻体素滤波器对点云进行预处理,减少点的数量同时保留表面细微特征。为解决传统迭代最近点(Iterative Closest Point, ICP)算法对初始位置敏感且收敛速度慢的问题,采用基于改进特征描述子的采样一致性(Sample Consensus Initial Alignment, SAC-IA)初始配准算法进行粗配准,使用基于KDtree加速的ICP算法进行精配准。本文选用三组点云数据,用不同的点云配准方法进行了测试。实验结果显示,在点云添加2%与5%噪声的情况下处理不同规模的点云数据时,所提出的方法配准所用时间和均方根误差(Root Mean Square Error, RMSE,ERMS)仍优于其它两种对比方法。展开更多
To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors for...To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.展开更多
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201901D211242201701D221017)。
文摘For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.
基金Project(XK100070532)supported by Beijing Education Committee Cooperation Building Foundation,China
文摘To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.