期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
1
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
融合注意力谱非局部块的视网膜图像质量分级 被引量:2
2
作者 梁礼明 董信 +2 位作者 雷坤 夏雨辰 吴健 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期102-113,共12页
视网膜图像质量评估(RIQA)是筛查糖尿病视网膜病变的关键组成部分之一。针对视网膜图像质量差异大且质量评估模型泛化能力不足等问题,提出一种融合注意力谱非局部块的多特征算法来对RIQA进行预测分级。首先采用融合光谱非局部块的ResNe... 视网膜图像质量评估(RIQA)是筛查糖尿病视网膜病变的关键组成部分之一。针对视网膜图像质量差异大且质量评估模型泛化能力不足等问题,提出一种融合注意力谱非局部块的多特征算法来对RIQA进行预测分级。首先采用融合光谱非局部块的ResNet50网络对输入图像进行特征提取;其次引入高效通道注意力用于提升模型对数据的表达能力,有效捕获通道间特征信息关系;再次利用特征迭代注意力融合模块对各局部特征信息融合;最后联合焦点损失和正则损失进一步提高质量分级的效果。在Eye-Quality数据集上准确率为88.59%,精确度为87.56%,敏感度和F1值分别为86.10%和86.74%。在RIQA-RFMiD数据集上准确率和F1值分别为84.22%和67.17%,仿真实验表明,文中算法对视网膜图像质量评估任务中具有较好的泛化能力。 展开更多
关键词 视网膜图像质量分级 谱非局部块 注意力机制 特征迭代融合 组合损失
在线阅读 下载PDF
融合注意力特征及动态卷积的肺结节辅助诊断 被引量:5
3
作者 谷宇 刘佳琪 +3 位作者 杨立东 张宝华 张祥松 贾成一 《科学技术与工程》 北大核心 2023年第16期6834-6844,共11页
针对肺结节关键影像征象信息不易获取,部分卷积神经网络(convolutional neural networks,CNN)模型对肺结节的识别率不高的问题,提出一种融合注意力特征的动态卷积残差网络(dynamic convolutional residual networks incorporating atten... 针对肺结节关键影像征象信息不易获取,部分卷积神经网络(convolutional neural networks,CNN)模型对肺结节的识别率不高的问题,提出一种融合注意力特征的动态卷积残差网络(dynamic convolutional residual networks incorporating attention features,DcANet),并在有效实现肺结节良恶性分类的基础上对所提模型的诊断结果进行可视化分析。此网络以适应肺结节三维小尺寸输入特点的残差网络为基本框架,在DcABlock部分使用可以自适应调整卷积参数的动态卷积以及迭代注意特征融合模块,使模型能够更准确地获取肺结节信息,提高模型的表征能力。此外,还使用类激活映射将三维图像的各层切片进行可视化分析。实验在最终测试集上的准确率为85.87%,平衡F分数(F1)值为82.67%,敏感度和特异性的综合指标Gmean值为85.51%。实验结果表明:该网络可以提升对肺结节良恶性分类的准确性,诊断结果具有可信性,有一定的临床应用价值。 展开更多
关键词 肺结节辅助诊断 动态卷积 迭代注意特征融合模块 深度学习 类激活映射
在线阅读 下载PDF
融合长距离信道注意力与病理特征的肺结节分类 被引量:1
4
作者 丁其川 王力 刘成 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第4期476-485,共10页
针对现有深度学习网络普遍存在的长距离特征通道关联性缺失、网络自提取特征会湮没肺结节病理显性特征等问题,首先,将通道注意力和空间注意力结合,提出一种可以有效建立长距离特征通道关联性的注意力模块LCA(long-distance channel atte... 针对现有深度学习网络普遍存在的长距离特征通道关联性缺失、网络自提取特征会湮没肺结节病理显性特征等问题,首先,将通道注意力和空间注意力结合,提出一种可以有效建立长距离特征通道关联性的注意力模块LCA(long-distance channel attention),让模型能获取肺部CT图像的全局显著特征,提高对肺结节的良恶性诊断精度.其次,将肺结节直径、纹理、钙化度等病理显性特征与其深度特征融合,以增强这些显性特征的重要度,提高模型的分类效果.最后,搭建一种特征提取网络DLCANet(dual-connected long-distance channel attention network)和一种分类器模型MARTM(multiple additive regression tree model).在数据集LIDC-LDRI和LUNA16上进行分类实验,与基准模型DPN(dual path network)相比,准确率提高了3.63%,假阳性率下降了8.66%,且整体性能优于目前主流模型. 展开更多
关键词 良恶性分类 长距离信道注意力机制 病理显性特征 特征融合 迭代决策树算法
在线阅读 下载PDF
基于YOLO-ISC的输电线路耐张线夹X-DR图像压接缺陷检测
5
作者 李海峰 梁纲 +3 位作者 刘阳 袁俊锋 王芬 钟封豪 《广东电力》 2025年第8期122-130,共9页
针对输电线路耐张线夹X射线数字成像(X-ray digital radiography, X-DR)图像检测效率较低,且人工识别易受主观因素影响的问题,提出一种基于YOLO-ISC的输电线路耐张线夹压接缺陷检测方法。首先,在YOLOv8的主干网络中引入注意力特征融合(i... 针对输电线路耐张线夹X射线数字成像(X-ray digital radiography, X-DR)图像检测效率较低,且人工识别易受主观因素影响的问题,提出一种基于YOLO-ISC的输电线路耐张线夹压接缺陷检测方法。首先,在YOLOv8的主干网络中引入注意力特征融合(iterative attention feature fusion, iAFF)模块,通过逐层融合不同尺度的特征减少信息的丢失;其次,采用SimAM注意力机制、内容感知特征重组算子(content-aware reassembly of features, CARAFE)构建融合网络PANet-SC,增强了缺陷特征的表达能力;最后,将融合后的特征输入检测头YOLO Head进行分类预测。实验结果表明,所用YOLO-ISC模型在检测耐张线夹X-DR图像的平均检测精度(mean average precision, mAP)值达到92.49%,检测速度为23帧/s。针对某类缺陷检测精度不足的问题,讨论模型置信度阈值对实际检测结果的影响,降低模型的误检率。将检测结果与SSD、Faster RCNN、DETR、YOLOv8等算法进行比较,验证所用方法的有效性。 展开更多
关键词 耐张线夹 X射线图像 缺陷检测 迭代注意力特征融合 内容感知特征重组算子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部