Sediment particles,as one of the key components of drip irrigation technology,significantly affect the service life of emitters and restrict the popularization of drip irrigation technology.Hence,two types of patch dr...Sediment particles,as one of the key components of drip irrigation technology,significantly affect the service life of emitters and restrict the popularization of drip irrigation technology.Hence,two types of patch drip irrigation emitters,focusing on the anti-clogging performance through the experiment,were investigated.The dynamic variations in the clogging characteristics of emitters,specifically were subjected to statistical analysis.The movement mechanism of emitter clogging and discharging sediment was studied.The effects of emitter structure and position factors on emitter clogging were analyzed.The results show that the pressure-compensated emitter exhibits superior anti-clogging perfor-mance,with a service life that is 227.8%greater than that of the labyrinth channel emitter.A single structural factor cannot completely evaluate the anti-clogging performance of emitters.All factors causing emitter clogging should be considered comprehensively.Emitters contain sensitive sediment prone to clogging,however,significant blockage occurs primarily when the sediment content is elevated.The discharge of sediment,denoted as V90,from the emitter is affected by the accumulative effect of clogged sediment.These results may offer valuable insights for the application and advancement of drip irrigation technology.展开更多
Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.How...Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.However,delayed sowing is unavoidable in mulch-free cultivation in ecological regions with a short frost-free period.Intercropping with cumin,which has a shorter growth period,served as an effective strategy to improve land use efficiency during the early growth stages of cotton.Therefore,a two-year field experiment was conducted to study the effects of intercropping cumin at the seeding rate of 2.5(ID1),3.85(ID2),and 5.2(ID3)kg・hm−2 on cotton growth,interspecies competition,fiber quality,and water use efficiency(WUE),as well as system economic benefits under subsurface drip irrigation.Monocropping cotton was used as the control(CK)treatment.Results At the initial flowering(IF)stage(the end of the co-growth period of cotton and cumin),cotton plant height in ID2 and ID3 treatments decreased by 5.93%–16.53%and 10.87%–31.11%,respectively,cotton stem diameter by 11.41%–14.25%and 3.37%–26.49%,respectively,and vegetative biomass by 14.46%–30.65%and 22.59%–49.91%,respectively,compared with CK treatment.With the increase in cumin density,the crop growth rate(CGR)and compensation effect in cotton tended to significantly decrease at the IF stage regardless of organs considered.For the non-co-growth period(after harvesting cumin),cotton reproductive organ biomass in ID2 and ID3 treatments increased by 4.09%‒14.61%at the boll opening stage,crop growth rate in reproductive organs by 20.74%and 74.26%from peak boll to boll opening stages compared with CK treatment,due to an enhancement of 19.09%and 49.30%in the compensation effect.Compared with ID1,the aggressivity treated by ID2 and ID3 decreased by 12.82%–46.34%and 17.95%–31.71%,respectively.However,owing to a greater number of green bolls in the upper canopy at the harvest stages in the ID3 treatment,the system production value(closely related to yield)treated by ID2 was 11.69%–16.89%,6.56%–20.02%,and 16.48%–59.83%greater than that of the ID1,ID3,and CK treatments,respectively.This also led to the highest WUE and net profit under the ID2 treatment.Conclusion Intercropping cumin with medium density improved the cotton biomass accumulation characteristics and increased resources such as land and water utilization efficiency and economic benefits through a stronger compensation effect after harvesting cumin under subsurface drip irrigation without mulch.This study not only provides alternatives to residual film pollution in arid cotton fields but also establishes a sustainable agro-ecological-economic planting paradigm by reducing plastic use and enhancing water and fertilizer use efficiency,holding significant implications for advancing resource-efficient agricultural systems.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
Chinese farmers actively engaged in the construction of irrigation and water conservancy facilities,laid the foundation for agricultural development and the entire socio-economic development under the socialist system...Chinese farmers actively engaged in the construction of irrigation and water conservancy facilities,laid the foundation for agricultural development and the entire socio-economic development under the socialist system.Chinese farmers are the main provider of material resources,human resources and the time resources for the construction of irrigation and water conservancy,therefore the State and society should requite farmers’ contribution and pay serious attention to the development of agriculture and countruside.展开更多
Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ...Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.展开更多
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)...The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.展开更多
How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical mode...How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.展开更多
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha...The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass.展开更多
Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is base...Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is based on the matter-element analysis and combined with the concepts of fuzzy mathematics,which is called the method of fuzzy matter-element analysis.It constructs the compound fuzzy matter element with the investment projects,evaluation factors and their fuzzy value.Through establishing the best subjection degree (fuzzy value),complex fuzzy matter element of relational coefficient and weight aggregation of fuzzy matter-element model,the writer achieves on optimum order of the investment projects according to the calculated relational degree and finds the best project.In this paper,the calculation of weight adopts the analytical hierarchy process method(AHP).Through the actual example,it shows that the model is simple and its calculation is reliable.It is very significant for the engineering evaluated bid and investment decision.展开更多
Through applying PPE model based on RAGA to evaluate the benefit of rice water saving,the author turns multi-dimension data into low dimension space.So the optimum projection direction can stand for the best influence...Through applying PPE model based on RAGA to evaluate the benefit of rice water saving,the author turns multi-dimension data into low dimension space.So the optimum projection direction can stand for the best influence on the collectivity.Thus,the value of projection function can evaluate each item good or not.The PPE model can avoid jamming of weight matrix in the method of fuzzy synthesize judgement,and obtain better result.The author wants to provide a new method and thought for readers who are engaged in investment decision-making of water saving irrigation and other relative study.展开更多
Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is...Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.展开更多
The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated b...The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated by a modified Tessier sequential extraction technique.The results show that the chemical fraction of Pb in soil is mainly the Res fraction and followed by FMO fraction,and the WS,WO,FMO,and SO fractions in topsoils(0-10 cm) are higher than those in subsoils(30-40 cm).The sum of contents of WS and Ex fractions(SWE) in topsoils is significantly positively related with that in subsoils,indicating the strong mobility of Pb in WS and Ex fractions in soils,and the SWE in soils is higher than the German trigger value for the transfer path soil-plant,indicating the high bioavailability of Pb in soils of this area.Fortunately,SWE and the ratio of WS and Ex fractions(RWE) to the sum of all fractions generally decrease with the soil depth in soil profile and the RWE in soil profile is lower than 0.5%,indicating the low pollution risk for Pb in groundwater.In addition,soil particles,pH and Fe2O3 play an important role in the impact of mobility and chemical fractions of Pb in soils.展开更多
The author considered the influences of several weather factors, such as air temperature, sunlight, saturation deficiency, wind speed and so on to forecasting the water requirement of well irrigation rice based on Art...The author considered the influences of several weather factors, such as air temperature, sunlight, saturation deficiency, wind speed and so on to forecasting the water requirement of well irrigation rice based on Artificial Neutron Network. Through dealing with the time series of water requirement and its influence factors, the author applied the multi-dimension data correlation analysis to ensure the net structure. Thus, the ANN model to forecast the water requirement of well irrigation rice has been built. By means of the ANN model, uncertainty relation between water requirement and many influence factors among the interior and exterior can be discovered. The results of ANN model is good, and can provide some references for establishing the water saving irrigation system.展开更多
Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the tr...Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the traditional multiple-application;this was designated as chemical topping(CT),but it is unclear whether the amount of irrigation needs to be adjusted to accommodate CT.Results:The main plots were assigned to three drip irrigation amounts[300(I_(1))480(I_(2)), and 660(I_(3))mm],and the subplots were assigned to the CT treatments[450(MC)750(MC_(2)),and 1050(MC_(3))mL·hm^(-2)25%MC]with MT as a control that was performed after early bloom.The optimum drip irrigation amount for CT was explored based on leaf photosynthesis,chlorophyll fluorescence,biomass accumulation,and yield.There were significant influe nces of drip irrigation,topping treatme nts and their interaction on chlorophyll fluorescence characteristics,gas exchange parameters and biomass accumulation characteristics as well as yield.The combination of I_(2) and MC_(2)(I_(2)MC_(2))performed best.Compared with I_(2)MC_(2)the net photosynthetic rate(Pn),stomatai conductance(Gs),transpiration rate(Tr),and photochemical quenching coefficient(qP)of I_(2)MC_(2)significantly increased by 4.0%~7.2%,6.8%〜17.1%,5.2%~17.6%,and 4.8%~9.6%,respectively,from the peak flowering to boll opening stages.Moreover,I_(2)MC_(2) showed fast reproductive organ biomass accumulation and the highest seed cotton yield;the latter was 6.6%~12.8%higher than that of I_(2)MT.Further analysis revealed that a 25%MC emulsion in water(MCEW)application resulted in yield improvement by increasing Pn,φPSⅡ,and qP to promote biomass accumulation and transport to reproductive organs.Conclusion:The results showed that the 480 mm drip irrigation combined with 750 mL·hm^(-2)MC increased the rate of dry matter accumulation in reproductive organs by increasing Pn,φPSⅡ and qP to improve photosynthetic performance,thus achieving higher yield.展开更多
On the basis of the introduction about water saving irrigation that works as a kind of new irrigation pattern,the method of anti-seep quality estimation of the conveying water and distributing channel which acts as an...On the basis of the introduction about water saving irrigation that works as a kind of new irrigation pattern,the method of anti-seep quality estimation of the conveying water and distributing channel which acts as an important engineering measure of water saving irrigation will be introduced in te paper.that is,by means of unit length of channel's water utilization coefficient(η 0)to estimate the quality of channel,and the calculative method has been explained by the example of an actual project.It can be referred to irrigational workers.展开更多
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experime...In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.展开更多
The Colorado River Delta has undergone a fast and drastic modification by human activities.Since 1930’s decade,agriculture plays a very important role in the development of the region changing land & water use in...The Colorado River Delta has undergone a fast and drastic modification by human activities.Since 1930’s decade,agriculture plays a very important role in the development of the region changing land & water use in Mexicali and Imperial Valleys,politically divided by the Mexico-U.S.A.border but united by the same hydrographic basin,together continue展开更多
To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil w...To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The results show that quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube is obtained, and R 2 is more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube dia- meter has a nonsignificant effect on the emitter discharge. Changes of the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge is 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, which achieves continuous irrigation, and further achieves the effect of water-saving.展开更多
基金National Natural Science Foundation of China(52269011,52469008)。
文摘Sediment particles,as one of the key components of drip irrigation technology,significantly affect the service life of emitters and restrict the popularization of drip irrigation technology.Hence,two types of patch drip irrigation emitters,focusing on the anti-clogging performance through the experiment,were investigated.The dynamic variations in the clogging characteristics of emitters,specifically were subjected to statistical analysis.The movement mechanism of emitter clogging and discharging sediment was studied.The effects of emitter structure and position factors on emitter clogging were analyzed.The results show that the pressure-compensated emitter exhibits superior anti-clogging perfor-mance,with a service life that is 227.8%greater than that of the labyrinth channel emitter.A single structural factor cannot completely evaluate the anti-clogging performance of emitters.All factors causing emitter clogging should be considered comprehensively.Emitters contain sensitive sediment prone to clogging,however,significant blockage occurs primarily when the sediment content is elevated.The discharge of sediment,denoted as V90,from the emitter is affected by the accumulative effect of clogged sediment.These results may offer valuable insights for the application and advancement of drip irrigation technology.
基金supported by the National Natural Science Foundation of China(31250512).
文摘Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.However,delayed sowing is unavoidable in mulch-free cultivation in ecological regions with a short frost-free period.Intercropping with cumin,which has a shorter growth period,served as an effective strategy to improve land use efficiency during the early growth stages of cotton.Therefore,a two-year field experiment was conducted to study the effects of intercropping cumin at the seeding rate of 2.5(ID1),3.85(ID2),and 5.2(ID3)kg・hm−2 on cotton growth,interspecies competition,fiber quality,and water use efficiency(WUE),as well as system economic benefits under subsurface drip irrigation.Monocropping cotton was used as the control(CK)treatment.Results At the initial flowering(IF)stage(the end of the co-growth period of cotton and cumin),cotton plant height in ID2 and ID3 treatments decreased by 5.93%–16.53%and 10.87%–31.11%,respectively,cotton stem diameter by 11.41%–14.25%and 3.37%–26.49%,respectively,and vegetative biomass by 14.46%–30.65%and 22.59%–49.91%,respectively,compared with CK treatment.With the increase in cumin density,the crop growth rate(CGR)and compensation effect in cotton tended to significantly decrease at the IF stage regardless of organs considered.For the non-co-growth period(after harvesting cumin),cotton reproductive organ biomass in ID2 and ID3 treatments increased by 4.09%‒14.61%at the boll opening stage,crop growth rate in reproductive organs by 20.74%and 74.26%from peak boll to boll opening stages compared with CK treatment,due to an enhancement of 19.09%and 49.30%in the compensation effect.Compared with ID1,the aggressivity treated by ID2 and ID3 decreased by 12.82%–46.34%and 17.95%–31.71%,respectively.However,owing to a greater number of green bolls in the upper canopy at the harvest stages in the ID3 treatment,the system production value(closely related to yield)treated by ID2 was 11.69%–16.89%,6.56%–20.02%,and 16.48%–59.83%greater than that of the ID1,ID3,and CK treatments,respectively.This also led to the highest WUE and net profit under the ID2 treatment.Conclusion Intercropping cumin with medium density improved the cotton biomass accumulation characteristics and increased resources such as land and water utilization efficiency and economic benefits through a stronger compensation effect after harvesting cumin under subsurface drip irrigation without mulch.This study not only provides alternatives to residual film pollution in arid cotton fields but also establishes a sustainable agro-ecological-economic planting paradigm by reducing plastic use and enhancing water and fertilizer use efficiency,holding significant implications for advancing resource-efficient agricultural systems.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.
文摘Chinese farmers actively engaged in the construction of irrigation and water conservancy facilities,laid the foundation for agricultural development and the entire socio-economic development under the socialist system.Chinese farmers are the main provider of material resources,human resources and the time resources for the construction of irrigation and water conservancy,therefore the State and society should requite farmers’ contribution and pay serious attention to the development of agriculture and countruside.
基金Supporting founds:National Key R&D Program(2016YFC0400204)Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.
基金National Natural Science Foundation of China(51109102,51469010,51769010)the basic research project of Yunnan Province(2014FB130)key project of education department in Yunnan Province(2011Z035)
文摘The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.
文摘How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.
基金China-Germany international cooperation project(IRTG1070)National Natural Science Foundation of China(Item number:0971940)
文摘The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass.
基金Project supported by the National High-Tech Research and Development program of China (863 Program ) (No.2 0 0 2 AA2 Z42 5 1-2 10 0 41) Postdoctoral Scientific Foundation of Northeast Agricultural U niversity. (No. 2 40 0 0 9) and postdoctoral Scien
文摘Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is based on the matter-element analysis and combined with the concepts of fuzzy mathematics,which is called the method of fuzzy matter-element analysis.It constructs the compound fuzzy matter element with the investment projects,evaluation factors and their fuzzy value.Through establishing the best subjection degree (fuzzy value),complex fuzzy matter element of relational coefficient and weight aggregation of fuzzy matter-element model,the writer achieves on optimum order of the investment projects according to the calculated relational degree and finds the best project.In this paper,the calculation of weight adopts the analytical hierarchy process method(AHP).Through the actual example,it shows that the model is simple and its calculation is reliable.It is very significant for the engineering evaluated bid and investment decision.
基金National"863"High-Technique Programm e.(No.2 0 0 2 AA2 Z42 5 1-2 10 0 41) Postdoctoral Scientific Foundation of NEAU(No.2 3 0 0 0 9) and Postdoctoral Scientific Foundation of Heilongjiang Province.
文摘Through applying PPE model based on RAGA to evaluate the benefit of rice water saving,the author turns multi-dimension data into low dimension space.So the optimum projection direction can stand for the best influence on the collectivity.Thus,the value of projection function can evaluate each item good or not.The PPE model can avoid jamming of weight matrix in the method of fuzzy synthesize judgement,and obtain better result.The author wants to provide a new method and thought for readers who are engaged in investment decision-making of water saving irrigation and other relative study.
基金funded by the Australian Government Department of Agriculture and Water Resourcesthe Cotton Research and Development Corporation's Rural Research and Development for Profit Project "More profit from nitrogen:enhancing the nutrient use efficiency of intensive cropping and pasture systems"funded by the Cotton Research and Development Corporation's PhD scholarship
文摘Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.
基金Project(41103059) supported by the National Natural Science Foundation of ChinaProject(2010CB428806-2) supported by the National Basic Research Program of China
文摘The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated by a modified Tessier sequential extraction technique.The results show that the chemical fraction of Pb in soil is mainly the Res fraction and followed by FMO fraction,and the WS,WO,FMO,and SO fractions in topsoils(0-10 cm) are higher than those in subsoils(30-40 cm).The sum of contents of WS and Ex fractions(SWE) in topsoils is significantly positively related with that in subsoils,indicating the strong mobility of Pb in WS and Ex fractions in soils,and the SWE in soils is higher than the German trigger value for the transfer path soil-plant,indicating the high bioavailability of Pb in soils of this area.Fortunately,SWE and the ratio of WS and Ex fractions(RWE) to the sum of all fractions generally decrease with the soil depth in soil profile and the RWE in soil profile is lower than 0.5%,indicating the low pollution risk for Pb in groundwater.In addition,soil particles,pH and Fe2O3 play an important role in the impact of mobility and chemical fractions of Pb in soils.
文摘The author considered the influences of several weather factors, such as air temperature, sunlight, saturation deficiency, wind speed and so on to forecasting the water requirement of well irrigation rice based on Artificial Neutron Network. Through dealing with the time series of water requirement and its influence factors, the author applied the multi-dimension data correlation analysis to ensure the net structure. Thus, the ANN model to forecast the water requirement of well irrigation rice has been built. By means of the ANN model, uncertainty relation between water requirement and many influence factors among the interior and exterior can be discovered. The results of ANN model is good, and can provide some references for establishing the water saving irrigation system.
基金financially supported by the Research Fund for the National Natural Science Foundation of China (31760369)Xinjiang Corps Science and Technology Innovation Talent Program (2020CB014)Major projects of the eighth Division (2020ZD01)
文摘Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the traditional multiple-application;this was designated as chemical topping(CT),but it is unclear whether the amount of irrigation needs to be adjusted to accommodate CT.Results:The main plots were assigned to three drip irrigation amounts[300(I_(1))480(I_(2)), and 660(I_(3))mm],and the subplots were assigned to the CT treatments[450(MC)750(MC_(2)),and 1050(MC_(3))mL·hm^(-2)25%MC]with MT as a control that was performed after early bloom.The optimum drip irrigation amount for CT was explored based on leaf photosynthesis,chlorophyll fluorescence,biomass accumulation,and yield.There were significant influe nces of drip irrigation,topping treatme nts and their interaction on chlorophyll fluorescence characteristics,gas exchange parameters and biomass accumulation characteristics as well as yield.The combination of I_(2) and MC_(2)(I_(2)MC_(2))performed best.Compared with I_(2)MC_(2)the net photosynthetic rate(Pn),stomatai conductance(Gs),transpiration rate(Tr),and photochemical quenching coefficient(qP)of I_(2)MC_(2)significantly increased by 4.0%~7.2%,6.8%〜17.1%,5.2%~17.6%,and 4.8%~9.6%,respectively,from the peak flowering to boll opening stages.Moreover,I_(2)MC_(2) showed fast reproductive organ biomass accumulation and the highest seed cotton yield;the latter was 6.6%~12.8%higher than that of I_(2)MT.Further analysis revealed that a 25%MC emulsion in water(MCEW)application resulted in yield improvement by increasing Pn,φPSⅡ,and qP to promote biomass accumulation and transport to reproductive organs.Conclusion:The results showed that the 480 mm drip irrigation combined with 750 mL·hm^(-2)MC increased the rate of dry matter accumulation in reproductive organs by increasing Pn,φPSⅡ and qP to improve photosynthetic performance,thus achieving higher yield.
文摘On the basis of the introduction about water saving irrigation that works as a kind of new irrigation pattern,the method of anti-seep quality estimation of the conveying water and distributing channel which acts as an important engineering measure of water saving irrigation will be introduced in te paper.that is,by means of unit length of channel's water utilization coefficient(η 0)to estimate the quality of channel,and the calculative method has been explained by the example of an actual project.It can be referred to irrigational workers.
基金National Natural Science Foundation of China(52079105,51779205)。
文摘In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.
文摘The Colorado River Delta has undergone a fast and drastic modification by human activities.Since 1930’s decade,agriculture plays a very important role in the development of the region changing land & water use in Mexicali and Imperial Valleys,politically divided by the Mexico-U.S.A.border but united by the same hydrographic basin,together continue
基金National Natural Science Foundation of China (41571222)。
文摘To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The results show that quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube is obtained, and R 2 is more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube dia- meter has a nonsignificant effect on the emitter discharge. Changes of the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge is 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, which achieves continuous irrigation, and further achieves the effect of water-saving.