The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized pl...The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion–neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmosphericpressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly,and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.展开更多
A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-fie...A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.展开更多
The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation res...The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation results show that the SOL flow in the divertor region can exhibit complex behaviour, such as a high Mach flow and flow reversal in different plasma regimes. When the divertor plasma is in the detachment state, the high Mach flow with approaching or exceeding sonic speed is observed away from the target plate in our simulation. When the divertor plasma is in the high recycling ~tate, the flow reversM with a ~mall Mach number (IMI 〈 0.2) is observed near the X-point along the separatrix region. The driving mechanisms for the high Mach flow and the reversed flow are analysed theoretically through momentum and continuity equations, respectively. The profile of the ionization sources is shown to be a possible formation condition causing the complex behaviour of the SOL flow. In addition, the effects of the high Mach flow and the flow reversal on the impurity transport are also discussed in this paper.展开更多
基金supported by National Natural Science Foundation of China(Nos.11975062,11605021 and 11975088)the China Postdoctoral Science Foundation(No.2017M621120)。
文摘The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion–neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmosphericpressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly,and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.
基金National High-tech Research & Development Plan(863 Projeet)(No.2008AA062317)National Natural Science Foundation of China(No.50578020)
文摘A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.085FCQ0123)the Chinese National Fusion Project for ITER (Grant No.2009GB106001)
文摘The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation results show that the SOL flow in the divertor region can exhibit complex behaviour, such as a high Mach flow and flow reversal in different plasma regimes. When the divertor plasma is in the detachment state, the high Mach flow with approaching or exceeding sonic speed is observed away from the target plate in our simulation. When the divertor plasma is in the high recycling ~tate, the flow reversM with a ~mall Mach number (IMI 〈 0.2) is observed near the X-point along the separatrix region. The driving mechanisms for the high Mach flow and the reversed flow are analysed theoretically through momentum and continuity equations, respectively. The profile of the ionization sources is shown to be a possible formation condition causing the complex behaviour of the SOL flow. In addition, the effects of the high Mach flow and the flow reversal on the impurity transport are also discussed in this paper.