-
题名离子束辅助薄膜沉积
被引量:13
- 1
-
-
作者
张宇峰
张溪文
任兆杏
韩高荣
-
机构
浙江大学硅材料国家重点实验室
中国科学院等离子体物理研究所
-
出处
《材料导报》
EI
CAS
CSCD
2003年第11期40-43,共4页
-
基金
国家自然科学基金(No.60006003)
-
文摘
离子束辅助沉积(IBAD)是在气相沉积的同时辅以离子束轰击的薄膜制备方法,可在低温下合成致密、均匀的薄膜。介绍了IBAD技术的概况,列举了具体应用领域,描述了射频ICP离子源辅助电子束蒸发,最后对IBAD的前景加以评论。
-
关键词
离子束辅助薄膜沉积
IBAD
薄膜制备
等离子体
光学性能
-
Keywords
ion beam assisted deposition,thin film,inductive coupling plasma
-
分类号
TN304.055
[电子电信—物理电子学]
-
-
题名热障涂层制备技术研究进展
被引量:26
- 2
-
-
作者
牟仁德
何利民
陆峰
陶春虎
-
机构
北京航空材料研究院
-
出处
《机械工程材料》
CAS
CSCD
北大核心
2007年第5期1-4,共4页
-
文摘
随着燃气涡轮发动机进口工作温度的提高,热障涂层技术受到了广泛的关注。综述了热障涂层研究及应用中的几种主要制备技术,包括等离子喷涂、电子束物理气相沉积、离子束辅助沉积、化学气相沉积等。介绍了上述几种制备技术的沉积原理,分析了各自的特点,并从涂层显微结构、涂层寿命、应用范围等方面进行了对比,认为离子束辅助沉积和化学气相沉积技术在未来高性能新型热障涂层制备中具有较大的发展潜力。
-
关键词
热障涂层
等离子喷涂
离子束辅助沉积
化学气相沉积
-
Keywords
thermal barrier coating
plasma spray
ion beam assisted film deposition
chemical vapor deposition
-
分类号
TG174.4
[金属学及工艺—金属表面处理]
TB34
[一般工业技术—材料科学与工程]
-
-
题名端部霍尔离子源工作特性及等离子体特性研究
被引量:14
- 3
-
-
作者
潘永强
朱昌
陈智利
杭凌侠
-
机构
西安工业学院光电科学与工程系
-
出处
《真空科学与技术》
CSCD
北大核心
2003年第1期57-60,共4页
-
文摘
研制了一种用于离子束辅助沉积光学薄膜的端部霍尔等离子体离子源 ,论述了该源的工作原理以及伏安特性。着重研究了用五栅网探针测试该源所发射的离子能量的原理和方法 ,并对测量结果进行了分析、比较。
-
关键词
离子束辅助沉积
光学薄膜
端部霍尔等离子体
离子源
工作原理
束流密度
-
Keywords
End Hall ion source,plasma,ion beam assisted deposition (IBAD),Optical thin film
-
分类号
TB43
[一般工业技术]
O53
[理学—等离子体物理]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 4
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
Surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 Document Code:A Article ID:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.One wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-