The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inv...We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inverses.In addition,the dual version of the w-(b,c)-core inverse is studied.Some results on(b,c)-core inverses and e-(b,c)-core inverses are unifed and generalized.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morpho...Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.展开更多
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit...Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.展开更多
Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and a...Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters.展开更多
During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval w...During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.展开更多
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ...We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.展开更多
Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the r...Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the revolution of metrological resistance standard.To date,the Hall effects have mainly focused on a single degree of freedom(Do F),and most of them require the breaking of spatial-inversion and/or time-reversal symmetries.Here we demonstrate a new type of Hall effect,i.e.,layer-valley Hall effect,based on a combined layer-valley Do F characterized by the product of layer and valley indices.The layer-valley Hall effect has a quantum origin arising from the layer-valley contrasting Berry curvature,and can occur in nonmagnetic centrosymmetric crystals with both spatial-inversion and time-reversal symmetries,transcending the symmetry constraints of single Do F Hall effect based on the constituent layer or valley index.Moreover,the layer-valley Hall effect is highly tunable and shows a W-shaped pattern in response to the out-of-plane electric fields.Additionally,we discuss the potential detection approaches and material-specific design principles of layer-valley Hall effect.Our results demonstrate novel Hall physics and open up exotic paradigms for new research direction of layer-valleytronics that exploits the quantum nature of the coupled layer-valley DoF.展开更多
We propose an ansatz without adjustable parameters for the calculation of a dynamical structure factor.The ansatz combines the quasi-particle Green’s function,especially the contribution from the renormalization fact...We propose an ansatz without adjustable parameters for the calculation of a dynamical structure factor.The ansatz combines the quasi-particle Green’s function,especially the contribution from the renormalization factor,and the exchange-correlation kernel from time-dependent density functional theory together,verified for typical metals and semiconductors from a plasmon excitation regime to the Compton scattering regime.It has the capability to reconcile both small-angle and large-angle inelastic x-ray scattering(IXS)signals with muchimproved accuracy,which can be used as the theoretical base model,in inversely inferring electronic structures of condensed matter from IXS experimental signals directly.It may also be used to diagnose thermal parameters,such as temperature and density,of dense plasmas in x-ray Thomson scattering experiments.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learn...Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data.展开更多
Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various t...Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.展开更多
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by speciali...In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by specializing certain parameters in the two transformations,four Rogers-Ramanujan type identities associated with moduli 20 are obtained.展开更多
We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasib...We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.展开更多
Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes usi...Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.展开更多
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
基金pported by National Natural Science Foundation of China(Grant No.12161049).
文摘We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inverses.In addition,the dual version of the w-(b,c)-core inverse is studied.Some results on(b,c)-core inverses and e-(b,c)-core inverses are unifed and generalized.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the Ruijin Hospital Guangci Introducing Talent Projectfinancial support from National Natural Science Foundation of China(82372145)+4 种基金the Research Fellow(Grant No.353146)Research Project(347897)Solutions for Health Profile(336355)InFLAMES Flagship(337531)grants from Academy of Finlandthe Finland China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture.
文摘Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金supported by the National Key Research and Development Project (No. 2022YFA1602301)the National Natural Science Foundation of China (Nos. U2267205, 12275361, 12125509, 12222514, 11961141003, and 12005304)+2 种基金the CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholarsthe Continuous-Support Basic Scientific Research Project
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
文摘Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.
基金supported by the National Natural Science Foundation of China (grant No. 42174156)the Young Science and Technology Star Project of Shaanxi Province (grant No. 2023KJXX-021)the Fundamental Research Funds for the Central Universities, CHD (grant Nos. 300102263401 and 300102264204)。
文摘Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters.
文摘During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.
基金Equinor for financing the R&D projectthe Institute of Science and Technology of Petroleum Geophysics of Brazil for supporting this research。
文摘We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.
基金supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 12274447)the National Key Research and Development Program of China(Grant Nos.2021YFA1202900 and 2023YFA1407000)+2 种基金the KeyArea Research and Development Program of Guangdong Province,China(Grant No.2020B0101340001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030002)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant No.XDB0470101)。
文摘Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the revolution of metrological resistance standard.To date,the Hall effects have mainly focused on a single degree of freedom(Do F),and most of them require the breaking of spatial-inversion and/or time-reversal symmetries.Here we demonstrate a new type of Hall effect,i.e.,layer-valley Hall effect,based on a combined layer-valley Do F characterized by the product of layer and valley indices.The layer-valley Hall effect has a quantum origin arising from the layer-valley contrasting Berry curvature,and can occur in nonmagnetic centrosymmetric crystals with both spatial-inversion and time-reversal symmetries,transcending the symmetry constraints of single Do F Hall effect based on the constituent layer or valley index.Moreover,the layer-valley Hall effect is highly tunable and shows a W-shaped pattern in response to the out-of-plane electric fields.Additionally,we discuss the potential detection approaches and material-specific design principles of layer-valley Hall effect.Our results demonstrate novel Hall physics and open up exotic paradigms for new research direction of layer-valleytronics that exploits the quantum nature of the coupled layer-valley DoF.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375234,12005012,and U1930402)the Laboratory Youth Fund of Institute of Applied Physics and Computational Mathematics(Grant No.6142A05QN21005)。
文摘We propose an ansatz without adjustable parameters for the calculation of a dynamical structure factor.The ansatz combines the quasi-particle Green’s function,especially the contribution from the renormalization factor,and the exchange-correlation kernel from time-dependent density functional theory together,verified for typical metals and semiconductors from a plasmon excitation regime to the Compton scattering regime.It has the capability to reconcile both small-angle and large-angle inelastic x-ray scattering(IXS)signals with muchimproved accuracy,which can be used as the theoretical base model,in inversely inferring electronic structures of condensed matter from IXS experimental signals directly.It may also be used to diagnose thermal parameters,such as temperature and density,of dense plasmas in x-ray Thomson scattering experiments.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
基金the sponsorship of Shandong Province Foundation for Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400)National Natural Science Foundation of China(42174139,42030103)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136)。
文摘Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data.
基金funding from the National Natural Science Foundation of China (Grant Nos.12035004 and 12320101004)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2023ZKZD06).
文摘Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金supported by the National Natural Science Foundation of China(12271234)。
文摘In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by specializing certain parameters in the two transformations,four Rogers-Ramanujan type identities associated with moduli 20 are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.11975214).
文摘We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.
基金the support from the National Natural Science Foundation of China (Grant No.11972267)。
文摘Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.