A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-conn...This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.展开更多
A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
This paper is devoted to the class of inverse problems for a nonlinear parabolic hemivariational inequality. The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admi...This paper is devoted to the class of inverse problems for a nonlinear parabolic hemivariational inequality. The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admissible coefficients. It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence. Based on this result the existence of a quasisolution of the inverse problem is obtained.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving t...The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.展开更多
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ...Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.展开更多
A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.T...A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.展开更多
An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods incl...An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods including the wavelet transform(WT)are often limited by relatively low time-frequency resolution,which is responsible for false high horizonassociated space resolution probably indicating more geological structures,especially when close geological anomalies exist.To address this issue,we impose a constraint of minimizing an lp(0<p<1)norm of time-frequency spectral coefficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for the optimal coefficients.Compared with the WT and inverse SD(ISD)using a typical l1-norm constraint,the modified ISD(MISD)using an lp-norm constraint can yield a more compact spectrum contributing to detect the distributions of close geological features.We design a 3 D synthetic dataset involving frequency-close thin geological anomalies and the other3 D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD.The application of 4 D spectrum on a 3 D real dataset with an area of approximately 230 km2 illustrates its potential for detecting deep channels and the karst slope fracture zone.展开更多
This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the...This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the time derivative of the integrals. Secondly, the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained. Finally, two examples are given to illustrate the application of the result.展开更多
The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (...The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
The computational complexity of inverse mimimum capacity path problem with lower bound on capacity of maximum capacity path is examined, and it is proved that solution of this problem is NP-complete. A strong polynomi...The computational complexity of inverse mimimum capacity path problem with lower bound on capacity of maximum capacity path is examined, and it is proved that solution of this problem is NP-complete. A strong polynomial algorithm for a local optimal solution is provided.展开更多
A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach ...A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).展开更多
In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface contai...In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.展开更多
The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and con...The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.展开更多
Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally. One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devot...Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally. One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devoted to investigating different algorithms for this kind of inverse problem preliminarily, including the preconditioned conjugate gradient method, penalty function method and genetic algorithm. The feasibility of each algorithm is analyzed. It is shown that the preconditioned conjugate gradient method is valid only for few arc segments, the estimation accuracy of the penalty function method is dependent on the initial conditions, and the convergence of genetic algorithm should be studied further for more segments in an arc current.展开更多
As a problem in data science the inverse Ising(or Potts)problem is to infer the parameters of a Gibbs-Boltzmann distributions of an Ising(or Potts)model from samples drawn from that distribution.The algorithmic and co...As a problem in data science the inverse Ising(or Potts)problem is to infer the parameters of a Gibbs-Boltzmann distributions of an Ising(or Potts)model from samples drawn from that distribution.The algorithmic and computational interest stems from the fact that this inference task cannot be carried out efficiently by the maximum likelihood criterion,since the normalizing constant of the distribution(the partition function)cannot be calculated exactly and efficiently.The practical interest on the other hand flows from several outstanding applications,of which the most well known has been predicting spatial contacts in protein structures from tables of homologous protein sequences.Most applications to date have been to data that has been produced by a dynamical process which,as far as it is known,cannot be expected to satisfy detailed balance.There is therefore no a priori reason to expect the distribution to be of the Gibbs-Boltzmann type,and no a priori reason to expect that inverse Ising(or Potts)techniques should yield useful information.In this review we discuss two types of problems where progress nevertheless can be made.We find that depending on model parameters there are phases where,in fact,the distribution is close to Gibbs-Boltzmann distribution,a non-equilibrium nature of the under-lying dynamics notwithstanding.We also discuss the relation between inferred Ising model parameters and parameters of the underlying dynamics.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval w...During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.展开更多
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
文摘This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
基金Project supported by the NSFC (10971019)Scientific Research Fund of Guangxi Education Department (201012MS067)USM Grant No.12.09.05
文摘This paper is devoted to the class of inverse problems for a nonlinear parabolic hemivariational inequality. The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admissible coefficients. It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence. Based on this result the existence of a quasisolution of the inverse problem is obtained.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金supported by the Na⁃tional Natural Science Foundation of China(No.12172078)the Fundamental Research Funds for the Central Univer⁃sities(No.DUT24MS007).
文摘The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.
基金Project supported by the Special Scientific Research Project for Public Interest(Grant No.GYHY201206009)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2012-13 and lzujbky-2013-11)the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)
文摘Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61071022)the Graduate Student Research and Innovation Program of Jiangsu Province,China (Grant No. CXZZ11-0381)
文摘A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the Fundamental Research Funds for the Central Universities(2462019QNXZ03)+2 种基金the Scientific Research and Technology Development Project of China National Petroleum Corporation(2017D-3504)the Major Scientific Research Program of Petrochina Science and Technology Management Department"Comprehensive Seismic Prediction Technology and Software Development of Natural Gas"(2019B-0607)the National Science and Technology Major Project(2017ZX05005-004)。
文摘An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods including the wavelet transform(WT)are often limited by relatively low time-frequency resolution,which is responsible for false high horizonassociated space resolution probably indicating more geological structures,especially when close geological anomalies exist.To address this issue,we impose a constraint of minimizing an lp(0<p<1)norm of time-frequency spectral coefficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for the optimal coefficients.Compared with the WT and inverse SD(ISD)using a typical l1-norm constraint,the modified ISD(MISD)using an lp-norm constraint can yield a more compact spectrum contributing to detect the distributions of close geological features.We design a 3 D synthetic dataset involving frequency-close thin geological anomalies and the other3 D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD.The application of 4 D spectrum on a 3 D real dataset with an area of approximately 230 km2 illustrates its potential for detecting deep channels and the karst slope fracture zone.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the time derivative of the integrals. Secondly, the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained. Finally, two examples are given to illustrate the application of the result.
文摘The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金The authors gratefully acknowledge the partial support of national natural Founda-tion (Grant 70071011)
文摘The computational complexity of inverse mimimum capacity path problem with lower bound on capacity of maximum capacity path is examined, and it is proved that solution of this problem is NP-complete. A strong polynomial algorithm for a local optimal solution is provided.
文摘A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61421062 and 61520106004)the Microsoft Research Fund of Asia
文摘In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.
基金Project supported by the Natural Science Foundation of Chongqing(CSTC,Grant No.2019JCYJ-MSXMX0441).
文摘The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.
基金supported by National Natural Science Foundation of China (No.50977072)the key project of Chinese Ministry of Education (No.109141)
文摘Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally. One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devoted to investigating different algorithms for this kind of inverse problem preliminarily, including the preconditioned conjugate gradient method, penalty function method and genetic algorithm. The feasibility of each algorithm is analyzed. It is shown that the preconditioned conjugate gradient method is valid only for few arc segments, the estimation accuracy of the penalty function method is dependent on the initial conditions, and the convergence of genetic algorithm should be studied further for more segments in an arc current.
基金the National Natural Science Foundation of China(Grant No.11705097)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20170895)+1 种基金the Jiangsu Government Scholarship for Overseas Studies of 2018 and Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY217013)the Foundation for Polish Science through TEAM-NET Project(Grant No.POIR.04.04.00-00-17C1/18-00).
文摘As a problem in data science the inverse Ising(or Potts)problem is to infer the parameters of a Gibbs-Boltzmann distributions of an Ising(or Potts)model from samples drawn from that distribution.The algorithmic and computational interest stems from the fact that this inference task cannot be carried out efficiently by the maximum likelihood criterion,since the normalizing constant of the distribution(the partition function)cannot be calculated exactly and efficiently.The practical interest on the other hand flows from several outstanding applications,of which the most well known has been predicting spatial contacts in protein structures from tables of homologous protein sequences.Most applications to date have been to data that has been produced by a dynamical process which,as far as it is known,cannot be expected to satisfy detailed balance.There is therefore no a priori reason to expect the distribution to be of the Gibbs-Boltzmann type,and no a priori reason to expect that inverse Ising(or Potts)techniques should yield useful information.In this review we discuss two types of problems where progress nevertheless can be made.We find that depending on model parameters there are phases where,in fact,the distribution is close to Gibbs-Boltzmann distribution,a non-equilibrium nature of the under-lying dynamics notwithstanding.We also discuss the relation between inferred Ising model parameters and parameters of the underlying dynamics.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
文摘During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.