期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大规模神经记录的峰电位聚类算法(特邀)
1
作者 徐明亮 李芳媛 +1 位作者 马浩然 何飞 《计算机工程》 CAS CSCD 北大核心 2024年第6期1-34,共34页
峰电位聚类是指在进行细胞外神经记录时,从神经电极记录中检测、聚类并确认出不同峰电位信号,并以一定的可靠度与假定的不同神经元对应。它是对细胞外神经记录进行预处理分析的基本步骤,也是神经科学中神经解码的首要步骤,更是当前高带... 峰电位聚类是指在进行细胞外神经记录时,从神经电极记录中检测、聚类并确认出不同峰电位信号,并以一定的可靠度与假定的不同神经元对应。它是对细胞外神经记录进行预处理分析的基本步骤,也是神经科学中神经解码的首要步骤,更是当前高带宽脑机接口(BCI)的重要研究方向之一。传统峰电位聚类包括峰电位检测、峰电位对齐、特征提取、特征聚类等步骤。当前,随着神经电极数量和密度不断增加,神经记录的规模呈爆炸式增长,这对峰电位聚类算法的效率和精度提出重大挑战。此外,针对现有峰电位聚类算法特征提取和表征能力不强、信噪比低、信息混叠等问题,各种算法增强方案乃至人工智能和大数据峰电位聚类方案应运而生,极大促进了对大脑复杂原理和工作机制的理解。研究首先概述侵入式BCI、神经编解码与峰电位聚类的相关性,接着阐述了各类峰电位聚类算法的原理和一般过程,并探讨了大脑神经信号与具体行为的映射关系与应用,最后展望了未来神经编解码所面临的挑战和发展趋势。 展开更多
关键词 峰电位聚类 侵入式脑机接口 神经编解码 机器学习 深度学习
在线阅读 下载PDF
基于HHT和CSSD的多域融合自适应脑电特征提取方法 被引量:36
2
作者 李明爱 崔燕 +1 位作者 杨金福 郝冬梅 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2479-2486,共8页
为改善运动想象脑电信号特征提取的自适应性和实时性,提出一种基于希尔伯特-黄变换(HHT)与共空域子空间分解算法(CSSD)的特征提取方法(HCSSD).在对脑电信号进行预处理的基础上,定义一种相对距离准则优选脑电极组合;计算脑电的Hilbert瞬... 为改善运动想象脑电信号特征提取的自适应性和实时性,提出一种基于希尔伯特-黄变换(HHT)与共空域子空间分解算法(CSSD)的特征提取方法(HCSSD).在对脑电信号进行预处理的基础上,定义一种相对距离准则优选脑电极组合;计算脑电的Hilbert瞬时能量谱和边际能量谱,以获取脑电的时-频特征,并基于CSSD提取其空域特征,采用串行特征融合策略得到脑电的时-频-空特征;设计学习矢量量化神经网络分类器,实现脑电数据分类.在训练集与测试集间隔一周且减少导联数量的情况下,基于HCSSD对左手小指和舌头的运动想象ECoG脑电数据的平均识别率为92%.实验结果表明:HCSSD在增强特征提取方法的自适应性、改善实时性的同时,提高了脑电信号识别率,为便携式BCI系统在康复领域的应用创造了条件. 展开更多
关键词 脑机接口 运动想象 希尔伯特-黄变换 共空域子空间分解 特征融合 自适应 brain-computer interface (bci) motor imagery (MI) hilbert-huang transform (HHT) common spatial sub-space decomposition (CSSD )
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部