期刊文献+
共找到4,069篇文章
< 1 2 204 >
每页显示 20 50 100
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
1
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
Intrusion detection based on system calls and homogeneous Markov chains 被引量:8
2
作者 Tian Xinguang Duan Miyi +1 位作者 Sun Chunlai Li Wenfa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期598-605,共8页
A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain ... A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain model to characterize the normal behavior of a privileged program, and associates the states of the Markov chain with the unique system calls in the training data. At the detection stage, the probabilities that the Markov chain model supports the system call sequences generated by the program are computed. A low probability indicates an anomalous sequence that may result from intrusive activities. Then a decision rule based on the number of anomalous sequences in a locality frame is adopted to classify the program's behavior. The method gives attention to both computational efficiency and detection accuracy, and is especially suitable for on-line detection. It has been applied to practical host-based intrusion detection systems. 展开更多
关键词 intrusion detection Markov chain anomaly detection system call.
在线阅读 下载PDF
Distributed intrusion detection for mobile ad hoc networks 被引量:7
3
作者 Yi Ping Jiang Xinghao +1 位作者 Wu Yue Liu Ning 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期851-859,共9页
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to... Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments. 展开更多
关键词 mobile ad hoc networks routing protocol SECURITY intrusion detection timed automata.
在线阅读 下载PDF
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:12
4
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection Convolutional neural network Feature fusion Infrared target
在线阅读 下载PDF
Grey-theory based intrusion detection model 被引量:3
5
作者 Qin Boping Zhou Xianwei Yang Jun Song Cunyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期230-235,共6页
To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theor... To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international. 展开更多
关键词 network security intrusion detection grey theory model.
在线阅读 下载PDF
Abnormal behavior detection by causality analysis and sparse reconstruction 被引量:1
6
作者 WANG Jun XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2842-2852,共11页
A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were ... A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were adopted. The low level visual features, which included trajectory shape descriptor, speeded up robust features and histograms of optical flow, were used to describe properties of individual behavior, and causality features obtained by causality analysis were introduced to depict the interaction information among a set of objects. In order to cope with feature noisy and uncertainty, a method for multiple-object anomaly detection was presented via a sparse reconstruction. The abnormality of the testing sample was decided by the sparse reconstruction cost from an atomically learned dictionary. Experiment results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for abnormal behavior detection. 展开更多
关键词 abnormal behavior detection GRANGER CAUSALITY test CAUSALITY FEATURE SPARSE RECONSTRUCTION
在线阅读 下载PDF
FLBS: Fuzzy lion Bayes system for intrusion detection in wireless communication network 被引量:2
7
作者 NARENDRASINH B Gohil VDEVYAS Dwivedi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3017-3033,共17页
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti... An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection. 展开更多
关键词 intrusion detection wireless communication network fuzzy clustering naive Bayes classifier lion naive Bayes system
在线阅读 下载PDF
Design and implementation of self-protection agent for network-based intrusion detection system 被引量:3
8
作者 ZHU Shu-ren(朱树人) LI Wei-qin(李伟琴) 《Journal of Central South University of Technology》 2003年第1期69-73,共5页
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag... Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively. 展开更多
关键词 intrusion detection SYSTEM (IDS) network-based intrusion detection system(NIDS) SELF-PROTECTION AGENT IP filter
在线阅读 下载PDF
An Adaptive Clustering Algorithm for Intrusion Detection
9
作者 QIU Juli 《现代电子技术》 2007年第2期130-132,共3页
In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-statio... In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved. 展开更多
关键词 CLUSTERING data mining intrusion detection wavelet transforms
在线阅读 下载PDF
Cluster-based Intrusion Detection in Wireless Ad-Hoc Networks
10
作者 DiWu ZhishengLiu +1 位作者 YongxinFeng GuangxingWang 《计算机工程与应用》 CSCD 北大核心 2004年第29期122-125,共4页
There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The int... There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The intrusion detection and cluster-based Ad-Hoc networks has been introduced,then,an architecture for better intrusion detection based on cluster using Data Mining in wireless Ad -Hoc networks has been shown.A statistical anomaly detection approach has been used.The anomaly detection and trace analysis have been done locally in each node and possibly through cooperation with clusterhead detection in the network. 展开更多
关键词 入侵检测 移动AD-HOC网络 数据挖掘 网络安全 聚类检测
在线阅读 下载PDF
Detecting network intrusions by data mining and variable-length sequence pattern matching 被引量:2
11
作者 Tian Xinguang Duan Miyi +1 位作者 Sun Chunlai Liu Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期405-411,共7页
Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux... Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance. 展开更多
关键词 intrusion detection anomaly detection system call data mining variable-length pattern
在线阅读 下载PDF
Real-Time Smart Meter Abnormality Detection Framework via End-to-End Self-Supervised Time-Series Contrastive Learning with Anomaly Synthesis
12
作者 WANG Yixin LIANG Gaoqi +1 位作者 BI Jichao ZHAO Junhua 《南方电网技术》 2025年第7期62-71,89,共11页
The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced met... The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced metering infrastructure services.However,this digital transformation also exposes power system to evolving threats,ranging from cyber intrusions and electricity theft to device malfunctions,and the unpredictable nature of these anomalies,coupled with the scarcity of labeled fault data,makes realtime detection exceptionally challenging.To address these difficulties,a real-time decision support framework is presented for smart meter anomality detection that leverages rolling time windows and two self-supervised contrastive learning modules.The first module synthesizes diverse negative samples to overcome the lack of labeled anomalies,while the second captures intrinsic temporal patterns for enhanced contextual discrimination.The end-to-end framework continuously updates its model with rolling updated meter data to deliver timely identification of emerging abnormal behaviors in evolving grids.Extensive evaluations on eight publicly available smart meter datasets over seven diverse abnormal patterns testing demonstrate the effectiveness of the proposed full framework,achieving average recall and F1 score of more than 0.85. 展开更多
关键词 abnormality detection cyber-physical security anomaly synthesis contrastive learning time-series
在线阅读 下载PDF
基于logs2intrusions与Web Log Explorer的综合取证分析研究 被引量:1
13
作者 杨晶 赵鑫 芦天亮 《信息网络安全》 CSCD 2017年第3期33-38,共6页
随着互联网应用的迅猛增长,其受到的安全威胁也越来越严重,尤其是网络入侵攻击事件造成了极大的危害。目前,对入侵行为检测的一种必要手段是对日志数据进行分析,网站日志文件是记录Web服务器接收处理请求以及运行时错误等各种原始信息... 随着互联网应用的迅猛增长,其受到的安全威胁也越来越严重,尤其是网络入侵攻击事件造成了极大的危害。目前,对入侵行为检测的一种必要手段是对日志数据进行分析,网站日志文件是记录Web服务器接收处理请求以及运行时错误等各种原始信息的文件,但目前来看网络日志文件的作用还有待进一步提升。文章分析了logs2intrusions、Web Log Explorer、光年SEO日志分析系统、逆火网站分析器这四种日志分析工具的特性,提出了基于logs2intrusions和Web Log Explorer两个工具优势的综合取证分析技术,实现了对大批量入侵攻击日志数据的快速分析处理,提高了对网络入侵攻击行为识别的准确率。 展开更多
关键词 网络入侵检测 logs2intrusions WebLogExplorer 系统日志
在线阅读 下载PDF
Multi-agent cooperative intrusion response in mobile adhoc networks 被引量:6
14
作者 Yi Ping Zou Futai +1 位作者 Jiang Xinghao Li Jianhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期785-794,共10页
The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- s... The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- sures are only to protect the networks, and there is no automated network-wide counteraction against detected intrusions, the architecture of cooperation intrusion response based multi-agent is propose. The architecture is composed of mobile agents. Monitor agent resides on every node and monitors its neighbor nodes. Decision agent collects information from monitor nodes and detects an intrusion by security policies. When an intruder is found in the architecture, the block agents will get to the neighbor nodes of the intruder and form the mobile firewall to isolate the intruder. In the end, we evaluate it by simulation. 展开更多
关键词 computer networks SECURITY mobile agent mobile adhoc networks intrusion detection intrusion response
在线阅读 下载PDF
Novel design concepts for network intrusion systems based on dendritic cells processes 被引量:2
15
作者 RICHARD M R 谭冠政 +1 位作者 ONGALO P N F CHERUIYOT W 《Journal of Central South University》 SCIE EI CAS 2013年第8期2175-2185,共11页
An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism... An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment. 展开更多
关键词 artificial immune systems network intrusion detection anomaly detection feature reduction negative selectionalgorithm danger model
在线阅读 下载PDF
基于改进V-detector算法的入侵检测研究与优化 被引量:2
16
作者 何泾沙 韩松 +1 位作者 朱娜斐 葛加可 《信息网络安全》 CSCD 北大核心 2020年第12期19-27,共9页
随着互联网用户数量的剧增,网络威胁也在迅速增长,传统的被动防御措施不足以防御日益多变的网络入侵。传统入侵检测系统原理是收集病毒特征再进行特征匹配,对于未知病毒,传统检测机制存在滞后性。面对日益繁杂的网络安全环境,研究基于... 随着互联网用户数量的剧增,网络威胁也在迅速增长,传统的被动防御措施不足以防御日益多变的网络入侵。传统入侵检测系统原理是收集病毒特征再进行特征匹配,对于未知病毒,传统检测机制存在滞后性。面对日益繁杂的网络安全环境,研究基于人工免疫理论的入侵检测系统具有重要意义。文章首先介绍人工免疫理论的核心思想否定选择算法,进而介绍实值否定选择算法和V-detector算法。针对V-detector算法的不足,进行3个方面的改进:提出基于定距变异的克隆选择算法提高检测器生成效率;提出去冗算法减少检测器冗余,加快算法收敛;引入并改进假设检验方法,对检测器集合的覆盖率进行评估。实验证明,文章提出的改进V-detector算法能有效提升检测精度,减少检测黑洞,并大大缩减检测时间。 展开更多
关键词 入侵检测 V-detector算法 假设检验
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
17
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
基于深度学习的网络入侵检测系统综述 被引量:2
18
作者 邓淼磊 阚雨培 +3 位作者 孙川川 徐海航 樊少珺 周鑫 《计算机应用》 北大核心 2025年第2期453-466,共14页
入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新... 入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。 展开更多
关键词 网络安全 入侵检测 深度学习 异常检测 网络入侵检测系统
在线阅读 下载PDF
融合改进堆叠编码器和多层BiLSTM的入侵检测模型 被引量:3
19
作者 陈虹 姜朝议 +2 位作者 金海波 武聪 卢健波 《计算机工程与应用》 北大核心 2025年第3期306-314,共9页
针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称... 针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称的数据集。采用改进的堆叠自编码器进行数据降维,消除特征冗余,并引入Dropout机制来增强信息融合,提升模型的泛化能力。提出一种融合一维CNN和多层BiLSTM的模块,分别提取空间特征和时间特征,以提高模型的分类性能。在NSL-KDD和CICIDS2017数据集上的实验结果表明,该模型可以实现较高的正确率和召回率,优于传统机器学习和深度学习方法。 展开更多
关键词 网络安全 入侵检测 数据不平衡 数据降维 多层BiLSTM
在线阅读 下载PDF
全国药品集采中标药品和中选企业异常探测 被引量:1
20
作者 牛奔 刘玺鲲 +1 位作者 柴语鹃 蚁文洁 《卫生经济研究》 北大核心 2025年第3期55-58,共4页
第九批全国药品集中带量采购共有41种中标药品,其中国家首年支付总额实际值与理想值差额处于异常值范围和临界值范围的各有5种;处于异常值范围的5种中标药品对应的中选企业共30家,其中首年销售额实际值与理想值的差额处于异常值范围的... 第九批全国药品集中带量采购共有41种中标药品,其中国家首年支付总额实际值与理想值差额处于异常值范围和临界值范围的各有5种;处于异常值范围的5种中标药品对应的中选企业共30家,其中首年销售额实际值与理想值的差额处于异常值范围的有14家。对此,可通过构建“0-1”规划模型,加强对中标药品和中选企业的异常探测,对不同支付额范围的中标药品实施差异化监管策略,多部门协调联动,确保全国药品集采的高度公平、透明与合规,在保障公众利益的同时,提升医疗保障体系的整体效能。 展开更多
关键词 药品集中带量采购 “0-1”规划模型 中标药品 中选企业 异常探测
在线阅读 下载PDF
上一页 1 2 204 下一页 到第
使用帮助 返回顶部