In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-statio...In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
文摘In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.