期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
EEG Feature Learning Model Based on Intrinsic Time-Scale Decomposition and Adaptive Huber Loss
1
作者 YANG Li-jun JIANG Shu-yue +1 位作者 WEI Xiao-ge XIAO Yun-hai 《Chinese Quarterly Journal of Mathematics》 2022年第3期281-300,共20页
According to the World Health Organization,about 50 million people worldwide suffer from epilepsy.The detection and treatment of epilepsy face great challenges.Electroencephalogram(EEG)is a significant research object... According to the World Health Organization,about 50 million people worldwide suffer from epilepsy.The detection and treatment of epilepsy face great challenges.Electroencephalogram(EEG)is a significant research object widely used in diagnosis and treatment of epilepsy.In this paper,an adaptive feature learning model for EEG signals is proposed,which combines Huber loss function with adaptive weight penalty term.Firstly,each EEG signal is decomposed by intrinsic time-scale decomposition.Secondly,the statistical index values are calculated from the instantaneous amplitude and frequency of every component and fed into the proposed model.Finally,the discriminative features learned by the proposed model are used to detect seizures.Our main innovation is to consider a highly flexible penalization based on Huber loss function,which can set different weights according to the influence of different features on epilepsy detection.Besides,the new model can be solved by proximal alternating direction multiplier method,which can effectively ensure the convergence of the algorithm.The performance of the proposed method is evaluated on three public EEG datasets provided by the Bonn University,Childrens Hospital Boston-Massachusetts Institute of Technology,and Neurological and Sleep Center at Hauz Khas,New Delhi(New Delhi Epilepsy data).The recognition accuracy on these two datasets is 98%and 99.05%,respectively,indicating the application value of the new model. 展开更多
关键词 EPILEPSY EEG signals intrinsic time-scale decomposition Huber loss function
在线阅读 下载PDF
基于ITD复杂度和PSO-SVM的滚动轴承故障诊断 被引量:52
2
作者 张小龙 张氢 +1 位作者 秦仙蓉 孙远韬 《振动与冲击》 EI CSCD 北大核心 2016年第24期102-107,138,共7页
针对滚动轴承故障诊断问题,提出了一种基于固有时间尺度分解(ITD)、Lempel-Ziv复杂度特征和粒子群优化支持向量机(PSO-SVM)的故障诊断新方法。首先对滚动轴承的振动信号使用ITD方法进行分解,得到若干个频率由高到低的固有旋转(PR)分量,... 针对滚动轴承故障诊断问题,提出了一种基于固有时间尺度分解(ITD)、Lempel-Ziv复杂度特征和粒子群优化支持向量机(PSO-SVM)的故障诊断新方法。首先对滚动轴承的振动信号使用ITD方法进行分解,得到若干个频率由高到低的固有旋转(PR)分量,由于滚动轴承在不同的故障状态下的PR分量Lempel-Ziv复杂度的分布不同,提取各PR分量的Lempel-Ziv复杂度值作为每个样本的特征向量,使用支持向量机(SVM)对轴承振动信号样本进行故障类型的识别,并用粒子群优化(PSO)方法对支持向量机的参数优化以获得较高的识别准确率。对滚动轴承振动信号的实测结果的分析表明:该方法可以实现对滚动轴承快速、准确地诊断,且不受载荷变化的影响。 展开更多
关键词 固有时间尺度分解 Lempel-Ziv复杂度 支持向量机 粒子群优化 滚动轴承 故障诊断
在线阅读 下载PDF
一种基于ITD算法的直扩信号检测算法 被引量:15
3
作者 安金坤 田斌 +2 位作者 孙永军 易克初 于全 《电子与信息学报》 EI CSCD 北大核心 2010年第5期1178-1182,共5页
固有时间尺度分解(ITD)算法是一种局域波分解算法,该文对直接序列扩频信号ITD分解,提出了一种通过频域粗搜索和细搜索分别检测直扩信号码片速率和载波频率的快速算法。该算法以瞬时幅度作为分析参量,先设置截止频率对信号低通滤波处理,... 固有时间尺度分解(ITD)算法是一种局域波分解算法,该文对直接序列扩频信号ITD分解,提出了一种通过频域粗搜索和细搜索分别检测直扩信号码片速率和载波频率的快速算法。该算法以瞬时幅度作为分析参量,先设置截止频率对信号低通滤波处理,并通过引入伴随频率达到抑制噪声的目的,利用了固有时间尺度分解算法时频分辨率高,运算速度快的优势。仿真结果显示在-15dB信噪比下能够有效地检测出码片速率和载波频率。 展开更多
关键词 信号检测 固有时间尺度分解(itd) 经验模态分解(EMD) 局域波分析 直扩信号(DSSS)
在线阅读 下载PDF
基于ITD与稀疏编码收缩的滚动轴承故障特征提取方法 被引量:11
4
作者 余建波 刘海强 +3 位作者 郑小云 周炳海 程辉 孙习武 《振动与冲击》 EI CSCD 北大核心 2018年第19期23-29,共7页
针对滚动轴承早期故障信号具有周期性冲击的特点和被强噪声淹没而难以提取的问题,提出了一种基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)与稀疏编码收缩(Sparse Coding Shrinkage,SCS)集成的轴承故障特征提取方法(... 针对滚动轴承早期故障信号具有周期性冲击的特点和被强噪声淹没而难以提取的问题,提出了一种基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)与稀疏编码收缩(Sparse Coding Shrinkage,SCS)集成的轴承故障特征提取方法(命名为ITD-SCS)。ITD能自适应地将振动信号分解成若干固有旋转分量(Proper Rotation,PR),选择有效的PR分量突显信号的冲击特征。进一步采用奇异值分解(Singular Value Decomposition,SVD)对每一有效PR实施滤噪作为SCS的前置滤噪单元以提高信号的稀疏性。最后,通过SCS利用极大似然估计方法提取合成信号中的冲击特征。将ITD-SCS应用于轴承内圈故障仿真信号和外圈实际故障振动信号的实验结果表明,ITD-SCS能有效提取强背景噪声下的轴承故障信号的冲击特征。 展开更多
关键词 轴承故障 故障特征提取 固有时间尺度分解 奇异值分解 稀疏编码收缩
在线阅读 下载PDF
基于ITD和改进形态滤波的滚动轴承故障诊断 被引量:9
5
作者 余建波 吕靖香 +2 位作者 程辉 孙习武 吴昊 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第2期241-249,共9页
为从受谐波和随机噪声干扰的振动信号中提取出故障冲击成分,融合四大基本形态学算子提出了改进形态滤波方法——平均组合差值形态滤波(ACDIF)方法,同时与固有时间尺度分解(ITD)相结合,并将ITD-ACDIF方法应用到滚动轴承的故障诊断中。首... 为从受谐波和随机噪声干扰的振动信号中提取出故障冲击成分,融合四大基本形态学算子提出了改进形态滤波方法——平均组合差值形态滤波(ACDIF)方法,同时与固有时间尺度分解(ITD)相结合,并将ITD-ACDIF方法应用到滚动轴承的故障诊断中。首先,对轴承振动信号进行ITD分解得到一系列旋转分量(PRC);然后,以峭度为准则筛选出含故障信息丰富的有效PRC,对每个有效分量进行ACDIF滤波提取冲击成分进行信号重构;最后,利用频谱分析提取重构信号中的故障特征。数值仿真和轴承故障振动信号的试验结果表明,本文方法可有效滤除谐波干扰,提取强背景噪声下的冲击故障特征,实现设备的故障诊断。 展开更多
关键词 轴承故障 固有时间尺度分解(itd) 旋转分量(PRC) 改进形态滤波 故障诊断
在线阅读 下载PDF
基于本征时间尺度分解和变量预测模型模式识别的机械故障诊断 被引量:25
6
作者 罗颂荣 程军圣 杨宇 《振动与冲击》 EI CSCD 北大核心 2013年第13期43-48,共6页
基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械... 基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。 展开更多
关键词 本征时间尺度分解 变量预测模型 多分类 机械故障诊断 机器学习
在线阅读 下载PDF
基于排列熵和VPMCD的滚动轴承故障诊断方法 被引量:19
7
作者 程军圣 马兴伟 杨宇 《振动与冲击》 EI CSCD 北大核心 2014年第11期119-123,共5页
VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方... VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方法应用于滚动轴承故障诊断。首先采用ITD(Intrinsic Time-scale Decomposition,简称ITD)对滚动轴承振动信号进行分解,得到若干个固有旋转(Proper Rotation)分量,并对包含主要故障信息的PR分量提取排列熵作为故障特征值;然后,对VPMCD分类器进行训练;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明该方法能够有效地应用于滚动轴承故障诊断。 展开更多
关键词 VPMCD itd 排列熵 滚动轴承 故障诊断
在线阅读 下载PDF
一种快速OFDM调制信号识别算法 被引量:4
8
作者 朱颜锐 田斌 +2 位作者 安金坤 孙永军 易克初 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第1期17-22,共6页
利用固有时间尺度分解对接收信号提取瞬时参数,结合方向数据的统计分析方法,提取了3个特征参数作为联合特征向量组,对正交频分复用(OFDM)信号和常见单载波调制信号进行类间识别,并对载波频率、符号速率和采样率等系统参数对识别性能的... 利用固有时间尺度分解对接收信号提取瞬时参数,结合方向数据的统计分析方法,提取了3个特征参数作为联合特征向量组,对正交频分复用(OFDM)信号和常见单载波调制信号进行类间识别,并对载波频率、符号速率和采样率等系统参数对识别性能的影响进行了分析.该算法可直接在中频对信号进行处理,避免了载波恢复过程.仿真结果表明,该算法可以在信噪比较低的条件下很好地区分OFDM信号和单载波,并对系统参数表现出了一定的鲁棒性. 展开更多
关键词 正交频分复用识别 固有时间尺度分解(itd) 瞬时相位 三角矩
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部