In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th...In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.展开更多
噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mod...噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mode Decomposition,EMD)方法获得一系列固有模态函数(Intrinsic Mode Function,IMF),依据各阶模态函数与原信号的相关程度,筛选出更具代表性的几阶固有模态函数进行解调,再对解调的结果运用11/2维谱分析方法进行谱分析以抑制高斯噪声,通过这种方法获得的DEMON谱信噪比优于传统方法。实测湖试数据分析结果表明,该改进方法可以有效地进行特征提取,结果优于经典DEMON谱分析方法;该改进方法具有一定的实用性,有利于进行后续目标分类识别。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501003 and 60701002)
文摘In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.
文摘噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mode Decomposition,EMD)方法获得一系列固有模态函数(Intrinsic Mode Function,IMF),依据各阶模态函数与原信号的相关程度,筛选出更具代表性的几阶固有模态函数进行解调,再对解调的结果运用11/2维谱分析方法进行谱分析以抑制高斯噪声,通过这种方法获得的DEMON谱信噪比优于传统方法。实测湖试数据分析结果表明,该改进方法可以有效地进行特征提取,结果优于经典DEMON谱分析方法;该改进方法具有一定的实用性,有利于进行后续目标分类识别。