期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
1
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
基于IESMD-功率谱熵-能量熵增量的泵站厂房振源辨识研究
2
作者 江琦 王建康 +2 位作者 张建伟 刘喜珠 赵瑜 《振动与冲击》 北大核心 2025年第9期45-56,共12页
针对多源激励和强背景噪声干扰的泵站厂房结构难以准确辨识振源的难题,提出一种改进的极点对称模态分解(improved extreme-point symmetric mode decomposition, IESMD)-功率谱熵(power spectral entropy, PSE)-能量熵增量(energy entro... 针对多源激励和强背景噪声干扰的泵站厂房结构难以准确辨识振源的难题,提出一种改进的极点对称模态分解(improved extreme-point symmetric mode decomposition, IESMD)-功率谱熵(power spectral entropy, PSE)-能量熵增量(energy entropy increment, EEI)联合振源辨识方法。对小波阈值降噪预处理信号进行IESMD自适应分离,引入噪声频谱理论确定功率谱熵和能量熵增量阈值,定量筛选本征模态分量(intrinsic mode function, IMF)实现振源精准辨识。对打渔张泵站厂房5个典型部位的实测振动数据进行振源辨识,引入振动能量计算各分频能量占比。结果表明:该方法能够将多源信号分解为多个有效的调频调幅分量,运行期动静干涉(rotor-stator interaction, RSI)引起的水力激振是厂房振动的主振源,其振动主频为33.32 Hz,在泵座、出口弯管和电机位置能量占比最大高达84.54%、98.53%和97.15%,是引起泵站厂房振动的主要原因。 展开更多
关键词 振源辨识 改进的极点对称模态分解(IESMD) 功率谱熵(PSE) 能量熵增量(EEI) 贡献率
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
3
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
4
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法 被引量:4
5
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
在线阅读 下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法 被引量:1
6
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
在线阅读 下载PDF
基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
7
作者 朱欢欢 迟玉伦 +2 位作者 张梦梦 熊力 应晓昂 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第1期73-84,共12页
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感... 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.7765 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。 展开更多
关键词 轧辊磨削颤振 EMD分解 固有模态函数 小波包能量熵 最小二乘支持向量机
在线阅读 下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
8
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列熵 支持向量机 本征模态函数 基于维度学习的狩猎
在线阅读 下载PDF
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:56
9
作者 张超 陈建军 郭迅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 总体平均经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
在线阅读 下载PDF
基于EMD能量熵和支持向量机的齿轮故障诊断方法 被引量:129
10
作者 张超 陈建军 郭迅 《振动与冲击》 EI CSCD 北大核心 2010年第10期216-220,共5页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于经验模态分解(empirical mode decomposition,EMD)和支持向量机的齿轮故障诊断方法。首先通过EMD方法将非平稳的原始加速度振动信号分解成若干个平... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于经验模态分解(empirical mode decomposition,EMD)和支持向量机的齿轮故障诊断方法。首先通过EMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(intrinsic mode function,IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可以通过计算不同振动信号的EMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机(support vector machine,SVM),判断齿轮的工作状态和故障类型。实验结果表明,该方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
在线阅读 下载PDF
基于IMF能量谱的水声信号特征提取与分类 被引量:18
11
作者 刘深 张小蓟 +1 位作者 牛奕龙 汪平平 《计算机工程与应用》 CSCD 2014年第3期203-206,226,共5页
经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通... 经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通过对水声信号进行经验模态分解,提取信号的本征模式分量并转换为能量谱特征向量,从而观测不同信号子频带能量谱的特征变化。分类实验采用支持向量机(SVM)分类器进行。实验结果表明,相对于小波能量谱特征提取法而言,利用IMF能量谱作为特征向量的分类实验具有更佳的分类效果,平均正确率达88%以上。 展开更多
关键词 经验模态分解 本征模函数 本征模函数能量谱 特征提取 支持向量机(SVM)分类器
在线阅读 下载PDF
基于IMF能量矩和神经网络的轴承故障诊断 被引量:35
12
作者 秦太龙 杨勇 +1 位作者 程珩 薛松 《振动.测试与诊断》 EI CSCD 2008年第3期229-232,共4页
针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称... 针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称EMD)方法,把振动信号分解为若干个IMF,再将重要的IMF分量作基于时间轴的积分,得到IMF能量矩特征向量,最后借助BP神经网络的分类能力对特征向量进行分类。对滚动轴承的正常状态、外圈故障、滚动体故障和外圈故障信号的分析结果表明,该方法能够准确、有效地识别这些故障。 展开更多
关键词 滚动轴承 本征模函数 能量矩 故障诊断 经验模态分解 BP神经网络
在线阅读 下载PDF
光纤周界入侵信号特征提取与识别方法的研究 被引量:24
13
作者 蒋立辉 刘杰生 +2 位作者 熊兴隆 王维波 李猛 《激光与红外》 CAS CSCD 北大核心 2017年第7期906-913,共8页
提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据... 提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据奇异值熵筛选出有用IMF分量,构建特征向量;最后,采用多核支持向量机识别入侵信号。采用实际采集的攀爬,敲击,汽车,风等场外入侵信号进行了实验验证,结果表明:CEEMD方法有效解决了EEMD的残留白噪声问题,多核SVM比单核SVM具有更好的识别率,攀爬入侵信号识别率达到95%。 展开更多
关键词 分布式光纤传感 互补经验模态分解 本征模态函数 奇异值熵 多核支持向量机
在线阅读 下载PDF
联合改进CEEMD与近似熵的脑电去噪方法 被引量:12
14
作者 张欢 刘燕 +4 位作者 佟宝同 赵凌霄 杨莹雪 王玉平 戴亚康 《计算机工程》 CAS CSCD 北大核心 2017年第6期53-58,共6页
针对现有完备总体经验模态分解方法在脑电去噪中的模态筛选偏差问题,结合改进的完备总体经验模态分解(ICEEMD)与近似熵,提出一种新的脑电(EEG)信号去噪方法。对EEG信号进行ICEEMD分解,得到一系列本征模态函数(IMF),再对IMF分别计算近似... 针对现有完备总体经验模态分解方法在脑电去噪中的模态筛选偏差问题,结合改进的完备总体经验模态分解(ICEEMD)与近似熵,提出一种新的脑电(EEG)信号去噪方法。对EEG信号进行ICEEMD分解,得到一系列本征模态函数(IMF),再对IMF分别计算近似熵,比较并选择近似熵值最大的IMF作为去噪后的信号。基于模拟信号和真实脑电信号的实验结果表明,与添加自适应噪声的完备总体经验模态分解方法相比,该方法能得到更清晰稳定的去噪结果,并且解决了IMF盲目选取导致的去噪失准及虚假模态等问题。 展开更多
关键词 脑电 去噪 本征模态函数 完备总体经验模态分解 近似熵
在线阅读 下载PDF
基于固有模态能量熵和支持向量机的输电线路故障选相新方法 被引量:13
15
作者 李晓晨 李天云 陈昌雷 《电力自动化设备》 EI CSCD 北大核心 2009年第5期104-108,共5页
提出一种输电线路故障选相新方法,先对线路的三相电压信号进行经验模态分解,得到若干个包含主要故障电压信息的固有模态函数分量,其次选取三相电压的前2个固有模态能量熵作为故障特征向量,将构造的特征向量输入到LS-SVM分类器对输电线... 提出一种输电线路故障选相新方法,先对线路的三相电压信号进行经验模态分解,得到若干个包含主要故障电压信息的固有模态函数分量,其次选取三相电压的前2个固有模态能量熵作为故障特征向量,将构造的特征向量输入到LS-SVM分类器对输电线路的故障类型进行分类及故障选相。结果表明该方法不受过渡电阻、故障位置和故障初始角等因素的影响,能对高阻接地故障模式进行准确识别,且对噪声具有很好的抑制效果,能准确实现故障分类。仿真分析验证了其有效性。 展开更多
关键词 输电线路 故障选相 经验模态分解 固有模态能量熵 LS-SVM
在线阅读 下载PDF
基于固有模态能量熵的微弱目标检测算法 被引量:16
16
作者 关键 张建 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2494-2499,共6页
该文分析了海杂波能量在各固有模态函数(IMF)间的分布特点,研究了目标对海杂波能量在各IMF间分布的影响。研究发现,无目标时,海杂波的能量主要集中于先分解出的3个IMF中,而当目标出现时,海杂波的能量将向后分解出的6个IMF扩散,且固有模... 该文分析了海杂波能量在各固有模态函数(IMF)间的分布特点,研究了目标对海杂波能量在各IMF间分布的影响。研究发现,无目标时,海杂波的能量主要集中于先分解出的3个IMF中,而当目标出现时,海杂波的能量将向后分解出的6个IMF扩散,且固有模态能量熵恰能描述目标出现引起的海杂波能量分布的这种变化,因此该文提出了采用固有模态能量熵检测微弱目标的算法。仿真结果表明,与基于盒维数的微弱目标检测算法、频域CFAR检测方法和多脉冲CA-CFAR(100个脉冲)检测算法相比,该算法的检测性能较好,有效增强了雷达对海杂波中微弱目标的检测能力。 展开更多
关键词 目标检测 Hilbert—Huang变换 固有模态函数 固有模态能量熵 海杂波
在线阅读 下载PDF
基于EMD的滚动轴承故障灰色诊断方法 被引量:14
17
作者 王录雁 王强 +2 位作者 张梅军 李焕良 赵玮 《振动与冲击》 EI CSCD 北大核心 2014年第3期197-202,共6页
经验模态分解(EMD)方法可使滚动轴承振动信号根据自身尺度自适应地分解为若干个内禀模态分量(IMF),滚动轴承发生故障会导致振动能量在各IMF分量上的分布发生变化,结合灰色关联模型建立IMF能量分布与轴承状态之间的对应关系,可实现轴承... 经验模态分解(EMD)方法可使滚动轴承振动信号根据自身尺度自适应地分解为若干个内禀模态分量(IMF),滚动轴承发生故障会导致振动能量在各IMF分量上的分布发生变化,结合灰色关联模型建立IMF能量分布与轴承状态之间的对应关系,可实现轴承的状态识别。为改善传统灰关联分析在模式识别方面的缺陷,基于斜率相似的原理构造了能反映曲线形状信息的相似关联度模型,结合传统的接近关联度模型建立了能同时反映曲线位置与形状特性的灰色综合关联度诊断模型。算例结果表明,该方法能准确有效地实现滚动轴承的故障诊断。 展开更多
关键词 经验模态分解 内禀模态能量 灰色综合关联度 滚动轴承 故障诊断
在线阅读 下载PDF
基于中值滤波-SVD和EMD的声发射信号特征提取 被引量:51
18
作者 徐锋 刘云飞 宋军 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2712-2719,共8页
针对随机噪声和脉冲干扰对经验模态分解(EMD)质量的影响,提出中值滤波和奇异值分解(SVD)联合降噪方法,并将其与EMD分解相结合形成一种新的声发射(AE)信号特征提取方法。首先对原始AE信号进行中值滤波,去除幅值较大的异常值;其次对去除... 针对随机噪声和脉冲干扰对经验模态分解(EMD)质量的影响,提出中值滤波和奇异值分解(SVD)联合降噪方法,并将其与EMD分解相结合形成一种新的声发射(AE)信号特征提取方法。首先对原始AE信号进行中值滤波,去除幅值较大的异常值;其次对去除异常值的信号序列进行相空间重构和SVD分解,并针对难以确定重构阶数这一问题,提出奇异值能量差分谱概念,利用谱峰的较大值位置来确定重构阶数,以进一步降噪;最后对降噪信号进行EMD分解,以本征模态函数(IMF)的能量占比作为表征各损伤信号的特征向量。数值仿真和5层胶合板损伤的实测数据表明,该方法不仅能够滤除噪声干扰,提高EMD分解的时效性和准确性,而且能够有效地提取出胶合板AE信号特征,对其损伤类型进行有效地识别。 展开更多
关键词 经验模态分解 中值滤波-奇异值分解 奇异值能量差分谱 本征模态函数 特征提取
在线阅读 下载PDF
基于剩余电流固有模态能量特征的生物触电故障诊断模型 被引量:23
19
作者 王金丽 刘永梅 +5 位作者 杜松怀 关海鸥 刘官耕 苏娟 韩晓慧 王利 《农业工程学报》 EI CAS CSCD 北大核心 2016年第21期202-208,共7页
针对未来低压电网剩余电流保护技术中,生物触电故障诊断与剩余电流之间具有不确定的潜在规律及关系映射,提出了一种基于剩余电流固有模态能量特征的生物触电故障诊断模型。首先应用Hilbert-Huang变换明确了生物触电故障时,剩余电流各固... 针对未来低压电网剩余电流保护技术中,生物触电故障诊断与剩余电流之间具有不确定的潜在规律及关系映射,提出了一种基于剩余电流固有模态能量特征的生物触电故障诊断模型。首先应用Hilbert-Huang变换明确了生物触电故障时,剩余电流各固有模态能量在时间和各种频率尺度上的分布,其中低频IMF分量的能量占有率高达86.35%,建立了剩余电流固有模态能量特征的提取方法;然后以选取剩余电流各IMF分量5维度能量特征向量,为生物触电故障诊断模型提供有效特征的信息源,利用量子遗传计算的快速寻优性和神经计算的自适应性有机结合,建立了一种量子遗传模糊神经网络作为触电故障模式分类归属的决策系统,仿真试验准确率达到100%。为研发基于人体触电电流而动作的新型剩余电流保护装置,提供可靠的理论依据和方法支撑。 展开更多
关键词 电力系统 电流调控 模型 剩余电流 固有模态分量 能量特征 生物触电故障 模糊神经网络 模式诊断模型
在线阅读 下载PDF
经典模态分解方法中内禀模态函数判据问题研究 被引量:12
20
作者 程军圣 于德介 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2004年第20期1861-1864,共4页
针对经典模态分解方法的内禀模态函数判据问题 ,根据内禀模态函数完备且正交的特点 ,提出了在内禀模态函数“筛选”过程中采用能量差跟踪法来确定内禀模态函数分量。通过仿真和实际信号的分析 ,验证了采用这种方法确定的内禀模态函数分... 针对经典模态分解方法的内禀模态函数判据问题 ,根据内禀模态函数完备且正交的特点 ,提出了在内禀模态函数“筛选”过程中采用能量差跟踪法来确定内禀模态函数分量。通过仿真和实际信号的分析 ,验证了采用这种方法确定的内禀模态函数分量满足正交性要求 ,表现了信号内含的真实物理信息 。 展开更多
关键词 经典模态分解(EMD)方法 内禀模态函数(IMF)判据 正交 能量差跟踪法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部