The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter su...The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.展开更多
The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The ...The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The new model, proposed as conditional cell transmission model (CCTM) has been developed with two improvements. First, cell transmission model (CTM) is expanded for two-way arterials by taking account of all diverging and merging activities at intersections. Second, a conditional cell is added to simulate periodic spillback and blockages at an intersection. The results of experiments for a multilane, two-way, three-signal sample network demonstrate that CCTM can accommodate various traffic demands and accurate representation of blockages at intersections. The delay of left turns is underestimated by 40 % in moderate conditions and by 58% in oversamrated condition when using the CTM rather than CCTM. Finally, the consistency between HCS 2000 and CCTM shows that CCTM is a reliable methodology of modeling traffic flow in oversaturated condition.展开更多
One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isol...One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.展开更多
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel...Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.展开更多
Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixt...Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.展开更多
The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles befo...The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.展开更多
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization...In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.展开更多
For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlin...For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlinear iteration.However,due to the complex underwater environment,the sound speed changes with time and space,and then the acoustic propagation path is actually a curve,which inevitably causes some errors to the traditional distance intersection positioning algorithm.To reduce the position error caused by the uncertain underwater sound speed,a new time of arrival(TOA)intersection underwater positioning algorithm of LBL system is proposed.Firstly,combined with the vertical layered model of the underwater sound speed,an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing.And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target.Moreover,the particle swarm optimization(PSO)algorithm is replaced with the tra-ditional nonlinear least square method to optimize the implicit positioning model of TOA intersection.Compared with the traditional distance intersection positioning model,the TOA intersec-tion positioning model is more suitable for the engineering practice and the optimization algorithm is more effective.Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.展开更多
In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fa...In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fail to leave intersections timely after the traffic signal tums red,and thereby conflicts between vehicles from two directions occur.The phenomenon was analyzed graphically by using the cumulative vehicle curve.Delays in three cases were modeled and compared:NM-vehicle priorities and M-vehicle priorities with all-red intervals unable to release all vehicles,and longer all-red intervals ensuring release all vehicles.Marginal delays caused by two illegal behaviors that occasionally happened in mixed traffic intersections were also investigated.It is concluded that increasing the speed of M-vehicles leaving intersections and postponing the entering of NM-vehicles are the keys in mathematics,although they are uneasy in disordered mixed traffic intersections due to a dilemma between efficiency and orders in reality.The results could provide implications for the traffic management in the cities maintaining a large number of M-and NM-vehicles.展开更多
With the realization that rocks with a schistosity parallel to bedding(S0 parallel S1)have undergone lengthy histories of deformation that predate the obvious first deformation(e.g.Bell et al.,2003; Sayab,2006;Yeh,200...With the realization that rocks with a schistosity parallel to bedding(S0 parallel S1)have undergone lengthy histories of deformation that predate the obvious first deformation(e.g.Bell et al.,2003; Sayab,2006;Yeh,2007)came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis(e.g.,Ham & Bell,2004;Bell & Newman,2006).This history is lost within the matrix because of reactivational shear展开更多
Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate pr...Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate projection method(APM) is the most popular one. However, APM suffers from high computational complexity, especially for real-time applications. Moreover, APM only gives the projection instead of the orthogonal basis of two given subspaces. This paper presents two alternate algorithms which have a closed form and reduced complexity as compared to the APM technique. Numerical simulations are conducted to verify the correctness and the effectiveness of the proposed methods.展开更多
Based on the summary of current structural theories of intersectiongent control. a new structural theory, the four-element intersection structure of intelligent control, has been proposed, then the reasons for adding...Based on the summary of current structural theories of intersectiongent control. a new structural theory, the four-element intersection structure of intelligent control, has been proposed, then the reasons for adding informatics into the structure have b展开更多
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.
基金Project(51108343) supported by the National Natural Science Foundation of ChinaProject(06121) supported by University of Transportation Center for Alabama,USA
文摘The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The new model, proposed as conditional cell transmission model (CCTM) has been developed with two improvements. First, cell transmission model (CTM) is expanded for two-way arterials by taking account of all diverging and merging activities at intersections. Second, a conditional cell is added to simulate periodic spillback and blockages at an intersection. The results of experiments for a multilane, two-way, three-signal sample network demonstrate that CCTM can accommodate various traffic demands and accurate representation of blockages at intersections. The delay of left turns is underestimated by 40 % in moderate conditions and by 58% in oversamrated condition when using the CTM rather than CCTM. Finally, the consistency between HCS 2000 and CCTM shows that CCTM is a reliable methodology of modeling traffic flow in oversaturated condition.
基金Project(61503048)supported by the National Natural Science Foundation of ChinaProjects(16C0050,16C0062)supported by Scientific Research Project of Hunan Provincial Department of Education,China
文摘One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.
文摘Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.
基金Projects(51322810,50908050)supported by the National Natural Science Foundation of China
文摘Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.
基金Project(51208451)supported by the National Natural Science Foundation of ChinaProject(10KJB580004)supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province,ChinaProject supported by the New Century Talents Project of Yangzhou University,China
文摘The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.
基金supported by Project of the National Natural Science Foundation of China(Grant No.62073256)in part by Shaanxi Provincial Science and Technology Department(Grant No.2020GY-125)。
文摘In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlinear iteration.However,due to the complex underwater environment,the sound speed changes with time and space,and then the acoustic propagation path is actually a curve,which inevitably causes some errors to the traditional distance intersection positioning algorithm.To reduce the position error caused by the uncertain underwater sound speed,a new time of arrival(TOA)intersection underwater positioning algorithm of LBL system is proposed.Firstly,combined with the vertical layered model of the underwater sound speed,an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing.And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target.Moreover,the particle swarm optimization(PSO)algorithm is replaced with the tra-ditional nonlinear least square method to optimize the implicit positioning model of TOA intersection.Compared with the traditional distance intersection positioning model,the TOA intersec-tion positioning model is more suitable for the engineering practice and the optimization algorithm is more effective.Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.
基金Project(2012CB725403)supported by the National Key Research Program of ChinaProject(71131001)supported by the National Natural Science Foundation of ChinaProject(2012JBM064)supported by the Fundamental Research Funds for the Central Universities of China
文摘In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fail to leave intersections timely after the traffic signal tums red,and thereby conflicts between vehicles from two directions occur.The phenomenon was analyzed graphically by using the cumulative vehicle curve.Delays in three cases were modeled and compared:NM-vehicle priorities and M-vehicle priorities with all-red intervals unable to release all vehicles,and longer all-red intervals ensuring release all vehicles.Marginal delays caused by two illegal behaviors that occasionally happened in mixed traffic intersections were also investigated.It is concluded that increasing the speed of M-vehicles leaving intersections and postponing the entering of NM-vehicles are the keys in mathematics,although they are uneasy in disordered mixed traffic intersections due to a dilemma between efficiency and orders in reality.The results could provide implications for the traffic management in the cities maintaining a large number of M-and NM-vehicles.
文摘With the realization that rocks with a schistosity parallel to bedding(S0 parallel S1)have undergone lengthy histories of deformation that predate the obvious first deformation(e.g.Bell et al.,2003; Sayab,2006;Yeh,2007)came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis(e.g.,Ham & Bell,2004;Bell & Newman,2006).This history is lost within the matrix because of reactivational shear
基金supported by the National Natural Science Foundation of China(61501142 61871149)the project supported by Discipline Construction Guiding Foundation in Harbin Institute of Technology(Weihai)(WH2-0160107)
文摘Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate projection method(APM) is the most popular one. However, APM suffers from high computational complexity, especially for real-time applications. Moreover, APM only gives the projection instead of the orthogonal basis of two given subspaces. This paper presents two alternate algorithms which have a closed form and reduced complexity as compared to the APM technique. Numerical simulations are conducted to verify the correctness and the effectiveness of the proposed methods.
文摘Based on the summary of current structural theories of intersectiongent control. a new structural theory, the four-element intersection structure of intelligent control, has been proposed, then the reasons for adding informatics into the structure have b