The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the ...The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.展开更多
In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using ...In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.展开更多
In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This st...In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.展开更多
Node interpolation cell method(NICM)is a micromechanics method employing the virtual displacement principle and the representative volume element(RVE)scheme to obtain the relationship between the global and the lo...Node interpolation cell method(NICM)is a micromechanics method employing the virtual displacement principle and the representative volume element(RVE)scheme to obtain the relationship between the global and the local strain.Mechanical properties of 2-D textile fabric reinforced ceramic matrix composites are predicted by NICM.Microstructures of 2-D woven and braided fabric reinforced composite are modeled by two kinds of RVE scheme.NICM is used to predict the macroscopic mechanical properties.The fill and warp yarns are simulated with cubic B-spline and their undulating forms are approximated by sinusoid.The effect of porosity on the fiber and matrix are considered as a reduction of elastic module.The connection of microstructure parameters and fiber volume fraction is modeled to investigate the reflection on the mechanical properties.The results predicted by NICM are compared with that by the finite element method(FEM).The comparison shows that NICM is a valid and feasible method for predicting the mechanics properties of 2-D woven and braided fabric reinforced ceramic matrix composites.展开更多
Nowadays, the technology of renewable sources grid-connection and DC transmission has a rapid development. And phasor measurement units(PMUs) become more notable in power grids, due to the necessary of real time monit...Nowadays, the technology of renewable sources grid-connection and DC transmission has a rapid development. And phasor measurement units(PMUs) become more notable in power grids, due to the necessary of real time monitoring and close-loop control applications. However, the PMUs data quality issue affects applications based on PMUs a lot. This paper proposes a simple yet effective method for recovering PMU data. To simply the issue, two different scenarios of PMUs data loss are first defined. Then a key combination of preferred selection strategies is introduced. And the missing data is recovered by the function of spline interpolation. This method has been tested by artificial data and field data obtained from on-site PMUs. The results demonstrate that the proposed method recovers the missing PMU data quickly and accurately. And it is much better than other methods when missing data are massive and continuous. This paper also presents the interesting direction for future work.展开更多
The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approxima...The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.展开更多
A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by...A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B...The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.展开更多
An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in th...An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilin...This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilinear elliptic equations. This strategy not only grently reduces the expensive computation, but also is successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems with non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illustrated by their graphics for visualization will show the efficiency of the approach.展开更多
In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the fu...In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the full approximate storage multigrid method is used to accelerate the solution of fow equation in original full-order space,and the discrete empirical interpolation method(DEIM)is applied to speed up the solution of Peng-Robinson equation of state in reduced-order subspace.The multigrid-DEIM semi-reduced-order model combines the computation both in full-order space and in reducedorder subspace,which not only preserves good prediction accuracy of full-order model,but also gains dramatic computational acceleration by multigrid and DEIM.Numerical performances including accuracy and acceleration of the proposed model are carefully evaluated by comparing with that of the standard semi-implicit method.In addition,the selection of interpolation points for constructing the low-dimensional subspace for solving the Peng-Robinson equation of state is demonstrated and carried out in detail.Comparison results indicate that the multigrid-DEIM semi-reduced-order model can speed up the simulation substantially at the same time preserve good computational accuracy with negligible errors.The general acceleration is up to 50-60 times faster than that of standard semi-implicit method in two-dimensional simulations,but the average relative errors of numerical results between these two methods only have the order of magnitude 10^(−4)-10^(−6)%.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (Grand No. 51138001)the China-German Cooperation Project (Grand No. GZ566)+1 种基金the Innovative Research Groups Funded by the National Natural Science Foundation of China (Grand No. 51121005)the Special Funds for the Basic Scientific Research Expenses for the Central University (Grant No. DUT13LK16)
文摘The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
基金supported by the State Key Development Program for Basic Research of China (Grant No 2006CB303102)Science and Technology Commission of Shanghai Municipality,China (Grant No 09DZ2272900)
文摘In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10902076)the Natural Science Foundation of Shanxi Province of China(Grant No.2007011009)+1 种基金the Scientific Research and Development Program of the Shanxi Higher Education Institutions(Grant No.20091131)the Doctoral Startup Foundation of Taiyuan University of Science and Technology(Grant No.200708)
文摘In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.
基金Supported by the Aviation Science Foundationof China(2009ZB5052)the Specialized Research Foundation for the Doctor Program of Higher Education(20070287039)~~
文摘Node interpolation cell method(NICM)is a micromechanics method employing the virtual displacement principle and the representative volume element(RVE)scheme to obtain the relationship between the global and the local strain.Mechanical properties of 2-D textile fabric reinforced ceramic matrix composites are predicted by NICM.Microstructures of 2-D woven and braided fabric reinforced composite are modeled by two kinds of RVE scheme.NICM is used to predict the macroscopic mechanical properties.The fill and warp yarns are simulated with cubic B-spline and their undulating forms are approximated by sinusoid.The effect of porosity on the fiber and matrix are considered as a reduction of elastic module.The connection of microstructure parameters and fiber volume fraction is modeled to investigate the reflection on the mechanical properties.The results predicted by NICM are compared with that by the finite element method(FEM).The comparison shows that NICM is a valid and feasible method for predicting the mechanics properties of 2-D woven and braided fabric reinforced ceramic matrix composites.
基金supported in part by National Natural Science Foundation of China(NSFC)(51627811,51707064)Project Supported by the National Key Research and Development Program of China(2017YFB090204)Project of State Grid Corporation of China(SGTYHT/16-JS-198)
文摘Nowadays, the technology of renewable sources grid-connection and DC transmission has a rapid development. And phasor measurement units(PMUs) become more notable in power grids, due to the necessary of real time monitoring and close-loop control applications. However, the PMUs data quality issue affects applications based on PMUs a lot. This paper proposes a simple yet effective method for recovering PMU data. To simply the issue, two different scenarios of PMUs data loss are first defined. Then a key combination of preferred selection strategies is introduced. And the missing data is recovered by the function of spline interpolation. This method has been tested by artificial data and field data obtained from on-site PMUs. The results demonstrate that the proposed method recovers the missing PMU data quickly and accurately. And it is much better than other methods when missing data are massive and continuous. This paper also presents the interesting direction for future work.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11871400 and 11971386)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM1019).
文摘The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.
文摘A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10871124)Innovation Program of Shanghai Municipal Education Commission (Grant No 09ZZ99)Shanghai Leading Academic Discipline Project (Grant No J50103)
文摘The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.
基金supported by the National Natural Science Foundation of China(Grant No.11171208)the Natural Science Foundation of Shanxi Province,China(Grant No.2013011022-6)
文摘An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
基金This research was supported by the National Natural Science Foundation of China (10571053)Scientific Research Fund of Hunan Provincial Education Department (0513039)the Special Funds of State Major Basic Research Projects (G1999032804)
文摘This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilinear elliptic equations. This strategy not only grently reduces the expensive computation, but also is successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems with non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illustrated by their graphics for visualization will show the efficiency of the approach.
基金This study is supported by the National Natural Science Foundation of China(Nos.51904031,51936001)the Beijing Natural Science Foundation(No.3204038)the Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(No.KZ201810017023).
文摘In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the full approximate storage multigrid method is used to accelerate the solution of fow equation in original full-order space,and the discrete empirical interpolation method(DEIM)is applied to speed up the solution of Peng-Robinson equation of state in reduced-order subspace.The multigrid-DEIM semi-reduced-order model combines the computation both in full-order space and in reducedorder subspace,which not only preserves good prediction accuracy of full-order model,but also gains dramatic computational acceleration by multigrid and DEIM.Numerical performances including accuracy and acceleration of the proposed model are carefully evaluated by comparing with that of the standard semi-implicit method.In addition,the selection of interpolation points for constructing the low-dimensional subspace for solving the Peng-Robinson equation of state is demonstrated and carried out in detail.Comparison results indicate that the multigrid-DEIM semi-reduced-order model can speed up the simulation substantially at the same time preserve good computational accuracy with negligible errors.The general acceleration is up to 50-60 times faster than that of standard semi-implicit method in two-dimensional simulations,but the average relative errors of numerical results between these two methods only have the order of magnitude 10^(−4)-10^(−6)%.