Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly underst...Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly understood.This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.Methods:Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus(GEO)database.Differentially expressed genes(DEGs)between disease and control groups were identified using R software.Common DEGs were extracted via Venn diagram analysis.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs.Protein-protein interaction(PPI)networks were constructed,and candidate hub genes were ranked using the maximal clique centrality(MCC)algorithm.Further validation of hub gene expression was performed using 2 independent datasets.Receiver operating characteristic(ROC)curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia.Mouse models of OA and sarcopenia were established.Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model.The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement.Real-time reverse transcription PCR(real-time RT-PCR)was employed to assess the mRNA expression levels of candidate key genes in both models.Gene set enrichment analysis(GSEA)was conducted to identify pathways associated with the selected shared key genes in both diseases.Results:A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia,including 76 upregulated and 13 downregulated genes.These 89 DEGs were significantly enriched in protein digestion and absorption,the PI3K-Akt signaling pathway,and extracellular matrix-receptor interaction.PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes.Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets,AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases,both of which showed a significant upregulation trend in the disease groups(all P<0.05).The value of area under the curve(AUC)for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7,indicating that both genes have potential value in predicting OA and sarcopenia.Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups(all P<0.05),consistent with the results observed in the bioinformatics analysis.GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction,ribosome,and oxidative phosphorylation in OA and sarcopenia.Conclusion:AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia.The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.展开更多
One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
基金supported by the National Natural Science Foundation of China(82060418).
文摘Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly understood.This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.Methods:Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus(GEO)database.Differentially expressed genes(DEGs)between disease and control groups were identified using R software.Common DEGs were extracted via Venn diagram analysis.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs.Protein-protein interaction(PPI)networks were constructed,and candidate hub genes were ranked using the maximal clique centrality(MCC)algorithm.Further validation of hub gene expression was performed using 2 independent datasets.Receiver operating characteristic(ROC)curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia.Mouse models of OA and sarcopenia were established.Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model.The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement.Real-time reverse transcription PCR(real-time RT-PCR)was employed to assess the mRNA expression levels of candidate key genes in both models.Gene set enrichment analysis(GSEA)was conducted to identify pathways associated with the selected shared key genes in both diseases.Results:A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia,including 76 upregulated and 13 downregulated genes.These 89 DEGs were significantly enriched in protein digestion and absorption,the PI3K-Akt signaling pathway,and extracellular matrix-receptor interaction.PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes.Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets,AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases,both of which showed a significant upregulation trend in the disease groups(all P<0.05).The value of area under the curve(AUC)for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7,indicating that both genes have potential value in predicting OA and sarcopenia.Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups(all P<0.05),consistent with the results observed in the bioinformatics analysis.GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction,ribosome,and oxidative phosphorylation in OA and sarcopenia.Conclusion:AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia.The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.