研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测...研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测数据变化实现机组设备、旁路等自动控制。SIS层接收联合循环机组监测数据后,将其作为基于深度神经网络故障诊断模型的输入,实现机组设备故障的识别。在检测到故障时触发联锁保护子系统动作,将停机指令下达给自动启停控制子系统,使机组停止运行。实验结果表明,该系统可实现燃气-蒸汽联合循环机组设备故障识别,在100次训练后,训练损失为0.1左右,F-Score指标最大值为0.93;故障工况下,该系统可根据预定逻辑实现燃气-蒸汽联合循环机组自动停机。展开更多
文摘研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测数据变化实现机组设备、旁路等自动控制。SIS层接收联合循环机组监测数据后,将其作为基于深度神经网络故障诊断模型的输入,实现机组设备故障的识别。在检测到故障时触发联锁保护子系统动作,将停机指令下达给自动启停控制子系统,使机组停止运行。实验结果表明,该系统可实现燃气-蒸汽联合循环机组设备故障识别,在100次训练后,训练损失为0.1左右,F-Score指标最大值为0.93;故障工况下,该系统可根据预定逻辑实现燃气-蒸汽联合循环机组自动停机。